ðæ°åŠã®é£åãAIãè§£ãæä»£ãž!DeepSeek-Prover-V2ãæã圢åŒçå®ç蚌æã®æåç· #AI #æ°åŠ #å®ç蚌æ #äº01
ðDeepSeek-Prover-V2ç»å Ž!ð AIãæ°åŠã®é£åãè§£ãæããæ°æä»£ãž #AI #å®ç蚌æ #æ°åŠ
〜ãµããŽãŒã«åè§£ãšåŒ·ååŠç¿ã§åœ¢åŒç蚌æã®å£ãæã¡ç Žã〜
åºæ
çãã、ããã«ã¡ã¯。「çè 」ã§ã。
çªç¶ã§ãã、çããã¯「æ°åŠã®èšŒæ」ãšèããŠã©ã®ãããªã€ã¡ãŒãžããæã¡ã§ãããã? å³å¯ã§、è«ççã§、æã«éåžžã«é£è§£ãªãã®。ãã、å€ãã®äººã«ãšã£ãŠ、æ°åŠã®èšŒæã¯é«ãå£ã®ããã«æãããããããããŸãã。ãããŠ、ãã®èšŒæãã³ã³ãã¥ãŒã¿ã«ä»»ãã「圢åŒçå®ç蚌æ」ã®äžçã¯、ããã«å°éçã§äžè¬ã«ã¯éŠŽæã¿ãèãåéã§ã。
ãããä»、ãã®éããããäžçã«、å€§èŠæš¡èšèªã¢ãã«(LLM)ã倧ããªå€é©ãããããããšããŠããŸã。DeepSeek-AIãçºè¡šãã「DeepSeek-Prover-V2」ã¯、ãŸãã«ãã®æåç·ã«ç«ã€ååšã§ã。
çè ããã®èšäºãæžãããšæã£ãã®ã¯、ãã®DeepSeek-Prover-V2ã、åãªãæ°ããAIã¢ãã«ã®ç»å Žã«ãšã©ãŸãã、AIã®æšè«èœåãã®ãã®ã次ã®ã¬ãã«ã«åŒãäžããå¯èœæ§ãç§ããŠãããšæããããã§ã。ç¹ã«、è€éãªåé¡ãããå°ããª「ãµããŽãŒã«」ã«åè§£ã、ãããæ®µéçã«è§£æ±ºããŠãããšããã¢ãããŒãã¯、人éã®æèããã»ã¹ã«ãéãããã®ããã、éåžžã«è峿·±ã、å°æ¥çãªAIã®é²åãèããäžã§ç€ºåã«å¯ãã§ããŸã。
ãã®èšäºãèªè ã®çæ§ã«ã¯、ãã²æè¡çãªè©³çްã ãã§ãªã、AIãã©ã®ããã«ããŠé£è§£ãªæ°åŠã®å£ã«æãã§ããã®ã、ãããŠãããç§ãã¡ã®ç€ŸäŒãåŠè¡ç ç©¶ã«ã©ã®ãããªåœ±é¿ãäžãããã®ã、ãšããåºãèŠç¹ããèªã¿é²ããŠããã ããããšèããŠããŸã。ææ°ã®AIæè¡ãæãç¥ã®äžçã、äžç·ã«æ¢æ±ããŠãããŸããã。
ã³ã©ã :蚌æãšçè
çè ã¯å€§åŠã§æ°åŠãå°æ»ããŠããããã§ã¯ãããŸããã、å³å¯ãªè«çãç©ã¿äžããŠççã«å°éãã「蚌æ」ãšããè¡çºã«ã¯、äžçš®ã®åŽé«ãããæããŠããŸãã。ããã、èªåã§ãã³ãæã£ãŠèšŒæãæžãåºããš、ãã£ãäžè¡ã®é£èºã«äœæéãæ©ãã ã、äºçްãªãã¹ã§å šäœã厩å£ããããš、ãã®é£ãããçæãããã®ã§ã。AIããã®èšŒæã®ããã»ã¹ãæ¯æŽ、ãããã¯ä»£æ¿ã§ããããã«ãªããšããã®ã¯、åœæã®çè ããããã°æ³åãã€ããªãSFã®ãããªè©±ã§ãã。æè¡ã®é²æ©ã¯æ¬åœã«é©ç°çã§ãã。
ã¯ããã«
ãã®èšäºã§ã¯、DeepSeek-AIã«ãã£ãŠéçºãããææ°ã®ãªãŒãã³ãœãŒã¹å€§èŠæš¡èšèªã¢ãã«「DeepSeek-Prover-V2」ã«ã€ããŠè©³ãã解説ããŸã。
DeepSeek-Prover-V2ã¯、ç¹ã«åœ¢åŒçå®ç蚌æ(Formal Theorem Proving)ã®åéã§ç»æçãªææãäžããŠããŸã。ãã®æ žå¿æè¡ã¯、è€éãªæ°åŠçåé¡ããã管çããããäžé£ã®「ãµããŽãŒã«」ã«åè§£ããèœåãš、ãã®éçšã§åŸãããããŒã¿ãçšãã匷ååŠç¿(Reinforcement Learning)ã®çµã¿åããã«ãããŸã。ãã®ã¢ãããŒãã«ãã、åŸæ¥ã®AIã¢ãã«ã§ã¯å°é£ã ã£ãé«åºŠãªæ°åŠçæšè«ãå¯èœãšãªããŸãã。
DeepSeek-Prover-V2ã¯、ããF2Fæ€èšŒãã³ãããŒã¯ã§88.9%ãšããé«ãåæ Œçãéæã、ç¥çµå®ç蚌æ(Neural Theorem Proving)ã«ãããŠæå 端(SoTA: State-of-the-Art)ã®ããã©ãŒãã³ã¹ã瀺ããŠããŸã。ãŸã、AIMEãæç§æžã®åé¡ã圢åŒåããç¬èªã®ãã³ãããŒã¯「ProverBench」ãå ¬éããŠãã、ãã®è©äŸ¡ç¯å²ã¯é«æ ¡ã¬ãã«ãã倧åŠã¬ãã«ãŸã§å€å²ã«ããããŸã。
æ¬èšäºã§ã¯、ãã®ã¢ãã«ã®æè¡çãªæŠèŠ、éçºããã»ã¹、è©äŸ¡çµæ、ãããŠãããæ°åŠãAIç ç©¶ã«ããããæçŸ©ã«ã€ããŠæãäžããŠãããŸã。ãŸã、Hacker Newsãªã©ã®ã³ãã¥ããã£ã§å¯ããããæ§ã ãªèŠç¹ãè°è«ã玹ä»ã、DeepSeek-Prover-V2ã®æœåšçãªåœ±é¿ãä»åŸã®å±æã«ã€ããŠãèå¯ãè¡ããŸã。
ã³ã©ã :SoTAã£ãŠããã?
æè¡è«æãçºè¡šã§ããèã「SoTA (State-of-the-Art)」ãšããèšè。ããã¯「çŸæç¹ã§æãåªããææ」ãšããæå³ã§ãã、æè¡ã®é²åã¯æ¬åœã«éãã®ã§、SoTAã®åº§ã¯ããã«å¥ã®æè¡ã«åã£ãŠä»£ããããŸã。DeepSeek-Prover-V2ã仿¥ã®SoTAãããããŸããã、ææ¥ã«ã¯ããã«åªããã¢ãã«ãç»å ŽãããããããŸãã。ãã®ã¹ããŒãæããŸã、AIç ç©¶ã®é¢çœãã®äžã€ã§ãã。
次ã«:ãªããã®ç ç©¶ãå¿ èŠã
ã§ã¯、ãªãDeepSeek-Prover-V2ã®ãããª、AIã«ãã圢åŒçå®ç蚌æã®ç ç©¶ãå¿ èŠãªã®ã§ãããã? ãã®çç±ã¯è€æ°ãããŸã。
- æ°åŠç ç©¶ã®å é: çŸä»£æ°åŠã¯ãŸããŸãé«åºŠå・æœè±¡åããŠãã、人éã®æã«ãã蚌æã¯èšå€§ãªæéãšåŽåãèŠããŸã。AIã蚌æããã»ã¹ãæ¯æŽããããšã§、æ°ããªå®çã®çºèŠã蚌æã®æ€èšŒãå éãã、æ°åŠç ç©¶å šäœã®é²æ©ã«è²¢ç®ã§ããŸã。
- ãœãããŠã§ã¢・ããŒããŠã§ã¢ã®ä¿¡é Œæ§åäž: 圢åŒçå®ç蚌æã¯、ããã°ã©ã ãããŒããŠã§ã¢èšèšã®æ£ãããæ°åŠçã«èšŒæããããã«çšããããŸã。AIã«ãã蚌æèœåã®åäžã¯、ããè€éãªã·ã¹ãã ãã¢ã«ãŽãªãºã ã®å®å šæ§ãä¿èšŒããäžã§äžå¯æ¬ ãšãªããŸã。äŸãã°、éèã·ã¹ãã ã®ãœãããŠã§ã¢ãèªåé転è»ã®å¶åŸ¡ã·ã¹ãã ãªã©、é«ãä¿¡é Œæ§ãæ±ããããåéãžã®å¿çšãæåŸ ãããŸã。
- AIã®æšè«èœåã®éççªç Ž: åŸæ¥ã®LLMã¯、ããã¹ãçæãæ å ±æ€çŽ¢ã«ã¯åªããŠããŸããã、å³å¯ãªè«ççæšè«、ç¹ã«å€æ®µéã«ãããè€éãªæšè«ã«ã¯éçããããŸãã。æ°åŠã®èšŒæã¯、éåžžã«å³å¯ã§äœç³»çãªæšè«ã®å žåäŸã§ã。DeepSeek-Prover-V2ã瀺ããããªãµããŽãŒã«åè§£ãšåŒ·ååŠç¿ãçµã¿åãããã¢ãããŒãã¯、AIãããé«åºŠã§ä¿¡é Œæ§ã®é«ãæšè«èœåãç²åŸããããã®éèŠãªäžæ©ãšãªããŸã。
- 人éãšAIã®ååã®æ·±å: AIãæ°åŠçãªæšè«ã蚌æã®äžéšãæ ãããšã§、æ°åŠè ã¯ããåµé çãªã¢ã€ãã¢ã®æ¢çŽ¢ã、ããé«ã¬ãã«ãªæŠå¿µã®æ§ç¯ã«éäžã§ããããã«ãªããŸã。AIã¯åãªãããŒã«ã§ã¯ãªã、人éã®æèãæ¡åŒµã、æ°ããªçºèŠãžãšå°ãããŒãããŒãšãªãããã®ã§ã。
- æè²ãžã®å¿çš: 圢åŒåããã蚌æããã»ã¹ãAIãçæ・解説ããããšã§、åŠçãå³å¯ãªè«ççæèã蚌æã®æ§é ãçè§£ããå©ãã«ãªãå¯èœæ§ããããŸã。
ãã®ããã«、DeepSeek-Prover-V2ã®ãããªç ç©¶ã¯、æ°åŠãšããåŠè¡åéã«çãŸãã、æè¡、æè²、ãããŠAIèªèº«ã®é²åãšããå¹ åºãåŽé¢ã«ãããŠ、極ããŠéèŠãªæçŸ©ãæã€ã®ã§ã。ãã®ç ç©¶ã¯、AIãåãªãç¥èã®éç©ããã¿ãŒã³èªèãè¶ ã、çã«「çè§£」ã、「æšè«」ããèœåãç²åŸããããã®、ææŠçãªè©Šã¿ãšèšããã§ããã。
ã³ã©ã :ãã°ã®ãªãäžçã¯å¯èœã?
ãœãããŠã§ã¢éçºã®äžçã§ã¯「ãã°ã¯é¿ããããªããã®」ãšè«Šããããã¡ã§ã。ããã、圢åŒçå®ç蚌æã培åºçã«è¡ãã°、çè«äžã¯ãã°ããŒãã«è¿ã¥ããããšãã§ããŸã。AIããã®åŒ·åãªèšç®åã§èšŒæããã»ã¹ãæ ãããã«ãªãã°、ããè€éãªãœãããŠã§ã¢ãããŒããŠã§ã¢ã§ã「æ£ãã」ãä¿èšŒããããšãå¯èœã«ãªããããããŸãã。ããã¯、ç§ãã¡ãããå®å¿ããŠæè¡ãå©çšã§ããæªæ¥ã«ç¹ãã、倢ã®ãããªè©±ã§ã。
DeepSeek-Prover-V2:ã¢ãã«æŠèŠãšãã®é©æ°æ§
ååž°çèšŒææ€çŽ¢ãéããã³ãŒã«ãã¹ã¿ãŒãæšè«ããŒã¿ã®åæ
DeepSeek-Prover-V2ã®ã³ã¢ãšãªãæè¡ã®äžã€ã¯、ååž°çèšŒææ€çŽ¢(Recursive Proof Search)ã§ã。ããã¯、DeepSeek-V3ãšãã髿§èœãªLLMãæŽ»çšããŠè¡ãããŸã。
åŸæ¥ã®AIã«ãã蚌æè©Šè¡ã§ã¯、å€ãã®å Žå、蚌æå šäœãäžåºŠã«çæããããšããã、æ¯èŒçåçŽãªã¹ããããç¹°ãè¿ãããšãäž»æµã§ãã。ããã、è€éãªå®çã®èšŒæã¯、ãã°ãã°è€æ°ã®è£é¡(ããå°ããªèšŒæå¯èœãªã¹ããŒãã¡ã³ã)ã«åè§£ã、ããããé ã«èšŒæããŠããéå±€çãªæ§é ãæã¡ãŸã。
DeepSeek-Prover-V2ã®ã¢ãããŒãã¯、ãã®äººéã®èšŒæããã»ã¹ã«ãã³ããåŸãŠããŸã。DeepSeek-V3ã«å¯Ÿã、è€éãªå®çããŸãé«ã¬ãã«ã®「蚌æã¹ã±ãã」ã«åè§£ããããã«ä¿ããŸã。ãã®ã¹ã±ããã«ã¯、蚌æã®äž»èŠãªã¹ãããã、å¿ èŠãšãªãã§ãããäžéçãªçµè«(ãµããŽãŒã«)ãå«ãŸããŸã。
ãããŠ、ããããã®ãµããŽãŒã«ã圢åŒå(Formalization)ããŸã。圢åŒåãšã¯、æ°åŠçãªã¹ããŒãã¡ã³ãã蚌æã、ã³ã³ãã¥ãŒã¿ãçè§£ã§ããå³å¯ãªè«çäœç³»(ãã®å Žåã¯Lean 4ãšããèšŒææ¯æŽç³»)ã®èšèã«ç¿»èš³ããäœæ¥ã§ã。DeepSeek-V3ã¯、蚌æã¹ã±ããã®åã¹ããããLean 4ã®ã³ãŒããšããŠçæããèœåãæã¡åãããŠããŸã。
ããã§éèŠãªã®ã¯、ãã®ããã»ã¹ã「ååž°ç」ã§ããç¹ã§ã。ããçæããããµããŽãŒã«ããŸã 倧ããå Žå、ãããããã«å°ããªãµããŽãŒã«ã«åè§£ãããšããããšãç¹°ãè¿ããŸã。æçµçã«、åãµããŽãŒã«ã¯、æ¯èŒç容æã«èšŒæå¯èœãªãµã€ãºã«ãªããŸã。
ãã®å°ããªãµããŽãŒã«ã®èšŒææ€çŽ¢ã«ã¯、ããèšç®ã³ã¹ãã®äœã7Bã¢ãã«(DeepSeek-Prover-V2-7B)ã䜿çšãããŸã。ãã¹ãŠã®åè§£ãããã¹ãããã®èšŒæãæåããã、ããããçµã¿åãããŠå ã®åé¡ã«å¯Ÿããå®å šãªåœ¢åŒç蚌æãæ§ç¯ããŸã。
ãã®ååž°çãªåè§£ãšåœ¢åŒå、ãããŠèšŒææ€çŽ¢ã®ãã€ãã©ã€ã³å šäœã、ã³ãŒã«ãã¹ã¿ãŒãããŒã¿ã»ãã(Cold Start Dataset)ãæ§ç¯ããããã«å©çšãããŸã。ãã®ããŒã¿ã»ããã«ã¯、å ã®åé¡、DeepSeek-V3ã«ããæèã®é£é(éå ¬åŒãªæšè«ããã»ã¹)、ãããŠããã«å¯Ÿå¿ããå®å šãªåœ¢åŒç蚌æãå«ãŸããŸã。ããã¯、AIã人éã®ããã«æ®µéçã«åé¡ãåè§£ã、è«ççã«æèããããã»ã¹ãåŠç¿ããããã®è²ŽéãªããŒã¿ãšãªããŸã。
åæã³ãŒã«ãã¹ã¿ãŒãããŒã¿ã«ãã匷ååŠç¿
ã³ãŒã«ãã¹ã¿ãŒãããŒã¿ã»ãããæ§ç¯ãããåŸ、DeepSeek-Prover-V2ã®ãã¬ãŒãã³ã°ã®æ¬¡ã®æ®µéãšããŠ、匷ååŠç¿(Reinforcement Learning)ãå®è¡ãããŸã。ããã¯、ã¢ãã«ã®æšè«èœå、ç¹ã«éå ¬åŒãªæšè«ãšåœ¢åŒçãªèšŒææ§ç¯ã®éã®ã®ã£ãããåããèœåãããã«åŒ·åããããã®ãã®ã§ã。
ãŸã、7Bã¢ãã«ã§ã¯çŽæ¥è§£ããªãã£ãé£ããåé¡ã®äžãã、ãã¹ãŠã®åè§£ããããµããŽãŒã«ã¯è§£æ±ºã§ãããã®ã®、å ã®åé¡ã®ãšã³ãããŒãšã³ãã®èšŒæã¯ãŸã çæã§ããŠããªããµãã»ãããéžã³åºããŸã。ãããã®åé¡ã«å¯ŸããŠ、解決æžã¿ã®ãµããŽãŒã«ã®èšŒæãæ§æããããšã§、å®å šãªåœ¢åŒç蚌æãäœæããŸã。
ãã®å®æãã圢åŒç蚌æã¯、DeepSeek-V3ãçæããæèã®é£é(CoT: Chain of Thought)ãšçµã¿åããããŸã。ãã®ãã¢ã¯、ã¢ãã«ã「ãã®ããã«èããã°、ãã®ããã«åœ¢åŒçã«èšŒæã§ãã」ãšãã察å¿é¢ä¿ãåŠç¿ããããã®æåž«ä¿¡å·ãšãªããŸã。ããã«ãã、éå ¬åŒãª(人éçãª)æšè«ããã»ã¹ãš、å³å¯ãªåœ¢åŒå・èšŒææ§ç¯ãšã®éã®äžè²«ããçµ±åãå®çŸãããŸã。
匷ååŠç¿ã®æ®µéã§ã¯、ãã®åæãããããŒã¿äžã§、蚌æè ã¢ãã«(Prover Model)ããã¡ã€ã³ãã¥ãŒãã³ã°ããŸã。å ±é ¬ä¿¡å·ãšããŠã¯、çæããã蚌æã¹ããããæçµçãªèšŒæã「æ£ããã誀ãã」ãšããäºå€ãã£ãŒãããã¯(Binary Feedback)ãäž»ãªåœ¢åŒãšããŠäœ¿çšãããŸã。
ãã®åŒ·ååŠç¿ããã»ã¹ãéããŠ、ã¢ãã«ã¯ããå¹ççã«、ãããŠããæ£ç¢ºã«、è€éãªå®çã®èšŒæãçæã§ããããã«ãªããŸã。
è©äŸ¡çµæ:ç¥çµå®ç蚌æã«ãããæå 端ããã©ãŒãã³ã¹
ãããã®é©æ°çãªæè¡ã«ãã、DeepSeek-Prover-V2ã¯ç¥çµå®ç蚌æã®åéã§ç®èŠãŸããææãéæããŸãã。
- miniF2F æ€èšŒãã³ãããŒã¯: DeepSeek-Prover-V2-671Bã¢ãã«ã¯、miniF2Fæ€èšŒãã³ãããŒã¯ã«ãããŠ、é©ç°çãª88.9%ã®åæ ŒçãéæããŸãã。ããã¯、ãã®åéã«ããã以åã®æå 端ã®çµæã倧ããäžåããã®ã§ã。miniF2Fã¯、æ§ã ãªæ°åŠç«¶æäŒãæç§æžããéããããå®çãLean 4ã§åœ¢åŒåãããã³ãããŒã¯ã§ãã、ã¢ãã«ã®æ±çšçãªèšŒæèœåãæž¬ãäžã§éåžžã«éèŠã§ã。
- PutnamBench: ããã«、ããé£æåºŠã®é«ãæ°åŠç«¶æäŒã§ããPutnam Competitionã®åé¡ã圢åŒåããPutnamBenchã«ãããŠã、658åäž49åã解決ããŸãã。ããã¯åæ ŒçãšããŠã¯çŽ7%ã§ãã、Putnam Competitionã®åé¡ã¯äººéã®æ°åŠè ã«ãšã£ãŠãéåžžã«é£ãã、AIããã®ã¬ãã«ã®åé¡ã解決ã§ããããã«ãªã£ãããšèªäœã倧ããªé²æ©ãšèšããŸã。(Hacker Newsã®ã³ã¡ã³ãã§ã¯、ãã®æ°åã®äœãã«å¯ŸããèšåããããŸããã、以åã®SoTAã¢ãã«ãšæ¯èŒããŠé¡èãªæ¹åã§ããããšã¯æ³šç®ã«å€ããŸã)
ã³ã©ã :æ°åŠè ãAIãé£ãã?
Putnam Competitionã¯、å šç±³ã®å€§åŠçã察象ã«ããéåžžã«ã¬ãã«ã®é«ãæ°åŠç«¶æäŒã§ã。ããã§ã¯、åã«èšç®ãã§ããã ãã§ãªã、åµé çãªçºæ³ãæ·±ãæŽå¯åãæ±ããããŸã。AIããã®ãããªåé¡ã49åãè§£ãããšããã®ã¯ãããããšã§ãã、åæã«、人éã®æ°åŠè ãæã€çºæ³åã®å£ã¯ãŸã åããšãèšããŸã。AIãšäººéã®ç¥æ§ã®éããå ±éç¹ã«ã€ããŠèããããããŸãã。
ProverBench: æ°ããªãã³ãããŒã¯ããŒã¿ã»ãã
DeepSeek-AIã¯、DeepSeek-Prover-V2ã®éçºãšè©äŸ¡ã®ããã«、ç¬èªã®ãã³ãããŒã¯ããŒã¿ã»ãã「ProverBench」ãå ¬éããŸãã。ProverBenchã¯åèš325åã§æ§æãããŠãã、以äžã®ãããªç¹åŸŽããããŸã。
- AIMEããã®åé¡ (15å): æè¿ã®AIMEã³ã³ãã¹ã(AIME 24ããã³25)ã§åºé¡ãããæ°è«ããã³ä»£æ°ã®åé¡ã圢åŒåãããã®ã§ã。AIME(American Invitational Mathematics Examination)ã¯、髿 ¡çã察象ãšããæ°åŠç«¶æäŒã§ãã、ãã®é£æåºŠã¯éåžžã«é«ã、é«åºŠãªåé¡è§£æ±ºèœåãæ±ããããŸã。ããã«ãã、AIãå®éã®ç«¶æäŒã¬ãã«ã®åé¡ã«å¯ŸåŠã§ããããè©äŸ¡ã§ããŸã。
- æç§æžããã®åé¡ (310å): å³éžãããæç§æžã®äŸé¡ãæè²ãã¥ãŒããªã¢ã«ããæœåºãããåé¡ã§ã。æ°è«、åç代æ°、ç·åœ¢ä»£æ°、æœè±¡ä»£æ°、埮ç©å、å®è§£æ、è€çŽ è§£æ、颿°è§£æ、確çãšãã£ãå¹ åºãæ°åŠåéãã«ããŒããŠããŸã。ããã«ãã、AIã®èšŒæèœåãç¹å®ã®ç«¶æäŒã«ç¹åããã®ã§ã¯ãªã、æ§ã ãªåéã®åºç€çãªå®çãåé¡ã«é©çšã§ããããè©äŸ¡ã§ããŸã。
ProverBenchã®æ§æã¯ä»¥äžã®éãã§ã。
ãšãªã¢ ã«ãŠã³ã
AIME 24&25 15
æ°è« 40
åçä»£æ° 30
ç·åä»£æ° 50
æœè±¡ä»£æ° 40
埮ç©å 90
å®è§£æ 30
è€çŽ è§£æ 10
颿°è§£æ 10
確ç 10
åèš 325
ãã®ProverBenchã¯、髿 ¡ã¬ãã«ã®ç«¶ææ°åŠããåŠéšã¬ãã«ã®æ°åŠãŸã§、ããå æ¬çãªè©äŸ¡ãå¯èœã«ããããã«èšèšãããŠããŸã。ç ç©¶è ãéçºè ã¯、ãã®ãã³ãããŒã¯ãå©çšããŠ、æ°ãã蚌æã¢ãã«ã®æ§èœãè©äŸ¡ããã、ç¹å®ã®æ°åŠåéã«ãããAIã®èœåãæ¯èŒãããããããšãã§ããŸã。
ProverBenchããŒã¿ã»ããã¯ãã¡ãããããŠã³ããŒãã§ããŸã。
ã³ã©ã :ãã³ãããŒã¯ã¯AIã®éç¥è¡š?
AIã¢ãã«ã®æ§èœã枬ãäžã§、ãã³ãããŒã¯ã¯éåžžã«éèŠã§ã。æ§ã ãªåéã®「ãã¹ã」ãçšæããŠ、AIãã©ãã ãè§£ãããã§ãã®èœåãè©äŸ¡ããŸã。ProverBenchã®ããã«、é£æåºŠãåéãåããªãèšå®ãããŠãããã³ãããŒã¯ããããš、ã¢ãã«ã®åŸæ・äžåŸæã、ã©ã®éšåãæ¹åãã¹ãããåããããããªããŸã。AIã®é²åã¯、ãããããã³ãããŒã¯ã®é²åãšãšãã«ãããšèšããã§ããã。
ã¢ãã«ãšããŒã¿ã»ããã®ããŠã³ããŒã、Quick Start
DeepSeek-Prover-V2ã¯、ç ç©¶ã³ãã¥ããã£ãéçºè ãå©çšã§ããããã«、ãªãŒãã³ãœãŒã¹ã¢ãã«ãšããŠå ¬éãããŠããŸã。
以äžã®2ã€ã®ã¢ãã«ãµã€ãºãå©çšå¯èœã§ã。
- DeepSeek-Prover-V2-7B: 70åãã©ã¡ãŒã¿ã®ã¢ãã«ã§ã。DeepSeek-Prover-V1.5-BaseãããŒã¹ãšããŠãã、æå€§32KããŒã¯ã³ã®æ¡åŒµã³ã³ããã¹ãé·ããµããŒãããŠããŸã。æ¯èŒç軜éã§ãããã、å®éšãå人ã®ç ç©¶ã«é©ããŠããŸã。
- DeepSeek-Prover-V2-671B: 6710åãã©ã¡ãŒã¿ã®ã¢ãã«ã§ã。DeepSeek-V3-Baseäžã§ãã¬ãŒãã³ã°ãããŠãã、ããé«ãããã©ãŒãã³ã¹ãçºæ®ããŸã。å€§èŠæš¡ãªèšç®ãªãœãŒã¹ãå¿ èŠãšãªããŸã。
ã©ã¡ãã®ã¢ãã«ã、Hugging Faceã®ã¢ãã«ããããããŠã³ããŒãããŠå©çšã§ããŸã。
ã¢ãã« ããŠã³ããŒã
Deepseek-prover-v2-7b ð€ HuggingFace
Deepseek-prover-v2-671b ð€ HuggingFace
ãŸã、è©äŸ¡ã«äœ¿çšãããProverBenchããŒã¿ã»ãããHugging Faceã§å ¬éãããŠããŸã。
ããŒã¿ã»ãã ããŠã³ããŒã
DeepSeek-proverãã³ã ð€ HuggingFace
Quick Start:ã¢ãã«ã䜿ã£ãŠèšŒæãçæããŠã¿ãã
Hugging Faceã®transformers
ã©ã€ãã©ãªã䜿çšããã°、DeepSeek-Prover-V2ãæ¯èŒçç°¡åã«äœ¿çšã§ããŸã。
以äžã«、miniF2FããŒã¿ã»ããããåé¡ãéžãã§èšŒæãçæããåºæ¬çãªPythonã³ãŒãäŸã瀺ããŸã。
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import time
torch.manual_seed(30)
model_id = "deepseek-ai/deepseek-prover-v2-7b" # ãŸã㯠"deepseek-ai/deepseek-prover-v2-671b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
formal_statement = """
import mathlib
import aesop
set_option maxHeartbeats 0
open BigOperators Real Nat Topology Rat
/-- The positive difference between $120\%$ of 30 and $130\%$ of 20 is 10. Show that. -/
theorem mathd_algebra_10 : abs ((120 : R) / 100 * 30 - 130 / 100 * 20) = 10 := by
sorry
"""
prompt = """
Complete the following Lean 4 code:
```lean4
{}
Before writing the Lean 4 code to formally prove the given theorem, please provide a detailed proof plan outlining the main steps and strategies. The plan should focus on the key ideas, intermediate lemmas, and proof structure that will guide the construction of the final formal proof.
""".strip()
chat = [{"role": "user", "content": prompt.format(formal_statement)},]
GPUã䜿çšããå Žå (å¿
èŠã«å¿ããŠããã€ã¹ãããã調æŽ)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)
inputs = tokenizer.apply_chat_template(chat, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device)
CPUã®ã¿ã®å Žå (é
ãå¯èœæ§ããããŸã)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, trust_remote_code=True)
inputs = tokenizer.apply_chat_template(chat, tokenize=True, add_generation_prompt=True, return_tensors="pt")
start = time.time()
output = model.generate(inputs, max_new_tokens=8192)
print(tokenizer.batch_decode(output))
print(time.time() - start)
ãã®ã³ãŒãã§ã¯、ãŸãHugging Faceããã¢ãã«ãšããŒã¯ãã€ã¶ãŒãããŒãããŸã。次ã«、蚌æãããæ°åŠçãªã¹ããŒãã¡ã³ããLean 4ã®ã³ãŒã(æªå®æã®éšåã«sorry
ãšèšè¿°)ãšããã³ãããšããŠäžããŸã。ããã³ããã«ã¯、ã¢ãã«ã«èšŒæèšç»ãšã³ãŒããçæãããããæç€ºãå«ããŸã。ã¢ãã«ã¯å
¥åã«åºã¥ããŠå¿çãçæã、ãã®äžã«Lean 4ã®èšŒæã³ãŒããå«ãŸããããšãæåŸ
ãããŸã。
DeepSeek-Prover-V2-671Bã¯DeepSeek-V3ãšåãã¢ãŒããã¯ãã£ãå ±æããŠãã、å©ç𿹿³ã®è©³çްã¯Hugging Faceã®DeepSeek-V3ããã¥ã¡ã³ããåèã«ããŠãã ãã。
ã³ã©ã :Lean 4ã£ãŠã©ããªèšèª?
Lean 4ã¯、æ°åŠã®èšŒæãã³ã³ãã¥ãŒã¿äžã§èšè¿°・æ€èšŒããããã«èšèšããã「èšŒææ¯æŽç³»(Proof Assistant)」ã§ã。ããã°ã©ãã³ã°èšèªãšæ°åŠçãªèšè¿°ãèåãããããªãã®ã§、éåžžã«å³å¯ãªè«çäœç³»ã«åºã¥ããŠããŸã。Lean 4ã§èšŒæãæžãã®ã¯、æ®éã®ããã°ã©ãã³ã°ãšã¯ãŸãéã£ãé£ããããããŸãã、äžåºŠèšŒæãæžããã°、ãã®æ£ããã¯ã³ã³ãã¥ãŒã¿ã«ãã£ãŠå®å šã«ä¿èšŒãããŸã。DeepSeek-Prover-V2ã¯、ãã®Lean 4ã®ã³ãŒããçæã§ãããšããã®ãããããšããã§ã。
ãã®ä»ã®åœã«ããã圱é¿、åã³æèš
DeepSeek-Prover-V2ã®ãããªAIã«ãã圢åŒçå®ç蚌æã®é²æ©ã¯、æ¥æ¬ä»¥å€ã®åœã 、ç¹ã«æ°åŠç ç©¶ãæ å ±ç§åŠç ç©¶ãçããªåœã ã«å€§ããªåœ±é¿ãäžãããšèããããŸã。
ãŸã、åŠè¡ç ç©¶ã®åéã§ã¯、欧米ãäžå¿ã«åœ¢åŒçå®ç蚌æã®ç ç©¶ã³ãã¥ããã£ã掻çºã«æŽ»åããŠããŸã。DeepSeek-Prover-V2ã®ãããªé«æ§èœãªAIã¢ãã«ã®ç»å Žã¯、圌ãã®ç ç©¶ããŒã«ãšããŠã®èšŒææ¯æŽç³»ã®èœåãé£èºçã«åäžãããŸã。ããã«ãã、ããè€éãªæ°åŠçæ§é ã®æ¢çŽ¢ã、ãããŸã§åœ¢åŒåãå°é£ã ã£ãçè«ã®æ€èšŒãé²ãã§ããã。ç¹ã«、ã³ã³ãã¥ãŒã¿ç§åŠã®åºç€çè«、æå·çè«、忣ã·ã¹ãã ãªã©ã®åéã§、çè«ã®æ£åœæ§ä¿èšŒã®ã¬ãã«ãäžæ®µãšåŒãäžããããå¯èœæ§ããããŸã。
ç£æ¥çã«ãããŠã¯、ç¹ã«æ¬§ç±³ã®å€§æããã¯äŒæ¥ãäžå¿ã«、ãœãããŠã§ã¢ã®ä¿¡é Œæ§ãã»ãã¥ãªãã£ã«å¯Ÿããé¢å¿ãé«ãŸã£ãŠããŸã。圢åŒçæ€èšŒ(Formal Verification)ã¯、ãããã®èª²é¡ã解決ãã匷åãªææ®µã§ãã、å°éç¥èãæã€äººæãšèšå€§ãªã³ã¹ããå¿ èŠã§ãã。AIã«ãã蚌æèªååãé²ãã°、ããå€ãã®äŒæ¥ããã®æè¡ãå°å ¥ã§ããããã«ãªã、çµæãšããŠããå®å šã§ä¿¡é Œæ§ã®é«ããœãããŠã§ã¢è£œåããµãŒãã¹ãçãŸããããšã«ç¹ãããŸã。
ãŸã、AIéçºèªäœãžã®æèšãšããŠã¯、DeepSeek-Prover-V2ãæ¡çšãã「ãµããŽãŒã«åè§£」ãš「匷ååŠç¿」ãšããã¢ãããŒãã、ä»ã®ãã¡ã€ã³ã«ãããè€éãªæšè«åé¡ã«ãå¿çšå¯èœã§ãããšããç¹ãæããããŸã。äŸãã°、è€éãªã³ãŒãã£ã³ã°ã¿ã¹ã¯、ç§åŠç仮説ã®çæ・æ€èšŒ、ãããã¯æ³åŸææžã®åæãªã©、倿®µéã®è«ççæèãå¿ èŠãªå Žé¢ã§、åæ§ã®ã¢ãŒããã¯ãã£ãåŠç¿ææ³ãæå¹ã§ããå¯èœæ§ã瀺åãããŸã。Hacker Newsã®ã³ã¡ã³ãã§ã、ãã®ãµããŽãŒã«åè§£ã®ã¢ã€ãã¢ããœãããŠã§ã¢éçºããããã£ã¯ã¹ãžã®å¿çšå¯èœæ§ã«ã€ããŠèšåãããŠããŸãã。
ãã ã、ãããã®æè¡ãåºãæ®åã、çã«åœ¹ç«ã€ããã«ãªããŸã§ã«ã¯、ãŸã å€ãã®èª²é¡ãæ®ãããŠããŸã。äŸãã°、AIãçæãã蚌æã®「è§£éå¯èœæ§」(人éãçè§£ã§ãã圢ã«å€æããããš)、èšŒææ¯æŽç³»ãšã®é£æºã®å®¹æã、ãããŠèšç®ãªãœãŒã¹ã®ã³ã¹ããªã©ã§ã。ä»ã®åœã ã¯、ãããã®èª²é¡ãå æããããã«、ç£åŠé£æºã§ç ç©¶éçºãé²ããŠããããšã«ãªãã§ããã。
ã³ã©ã :AI、ã³ãŒããæžã?
Hacker Newsã®ã³ã¡ã³ãã«「ããŒããããã¿ãŒãšãŒãªãŒã®ãµã³ãã€ããã®äœãæ¹ãXXããŒãžã®ææžã«ãã」ãšããå·¥åŠã³ãŒã¹ã®äŸãããããŸãã。DeepSeek-Prover-V2ã®ãµããŽãŒã«åè§£èœåã¯、ãŸãã«ãã®ãããªçްããæé ãžã®åè§£ã«å¿çšã§ãããã§ã。æ°åŠã®èšŒæã ãã§ãªã、ãœãããŠã§ã¢ã®èšèšããããããžã®æç€ºçæãªã©、æ§ã ãªã¿ã¹ã¯ãAIãåè§£・å®è¡ã§ããããã«ãªãæªæ¥ã¯、ãããããŸã§æ¥ãŠããã®ãããããŸãã。
æ¥æ¬ã«ããã圱é¿、åã³æèš
DeepSeek-Prover-V2ã®ãããªAIã«ãã圢åŒçå®ç蚌ææè¡ã®é²æ©ã¯、æ¥æ¬ã«ã確å®ã«åœ±é¿ãäžããã§ããã。
æ¥æ¬ã®æ°åŠç ç©¶ã³ãã¥ããã£ã¯äžççã«èŠãŠãã¬ãã«ãé«ãã§ãã、圢åŒçå®ç蚌æãèšŒææ¯æŽç³»ã®å©çšã¯、欧米ã»ã©äžè¬çã§ã¯ãªããããããŸãã。DeepSeek-Prover-V2ã®ãã㪠powerful ãªããŒã«ãç»å Žããããšã§、æ¥æ¬ã®æ°åŠè ããããã®æè¡ã«è§Šããæ©äŒãå¢ã、ç ç©¶ææ³ã®å€æ§åãé²ãå¯èœæ§ããããŸã。ç¹ã«、è¥æç ç©¶è ã«ãšã£ãŠã¯、æ°ããªç ç©¶ããŒã«ãšããŠAIãæŽ»çšããã¹ãã«ãéèŠã«ãªããããããŸãã。
ç£æ¥çã«ãããŠã¯、èªåè»、ãããã£ã¯ã¹、éèã·ã¹ãã ãªã©、é«ãä¿¡é Œæ§ãæ±ããããåéã§æ¥æ¬ã®äŒæ¥ã¯åŒ·ã¿ãæã£ãŠããŸã。ãããã®åéã§åœ¢åŒçæ€èšŒã®å¿ èŠæ§ã¯èªèãããŠããŸãã、å°å ¥ã®ããŒãã«ã¯é«ãçŸç¶ããããŸã。AIã«ãã蚌æèªååæè¡ãå®çšåãããã°、æ¥æ¬ã®ç£æ¥çããã®æè¡ã掻çšã、補åããµãŒãã¹ã®å®å šæ§ãããã«é«ããããšãã§ããã§ããã。ããã¯、åœéç«¶äºåãç¶æ・åäžãããäžã§éèŠãªèŠçŽ ãšãªããŸã。
AIéçºã®èгç¹ããã¯、DeepSeek-Prover-V2ã®æåããåŠã¶ã¹ãæèšã¯å€ãã§ã。ç¹ã«、è€éãªã¿ã¹ã¯ãåè§£ããã¢ãããŒãã、çæãããããŒã¿ãçšãã匷ååŠç¿ã®æå¹æ§ã¯、æ¥æ¬ã®AIç ç©¶éçºã«ãããŠãåèã«ãã¹ãç¹ã§ã。æ¥æ¬ç¬èªã®åŒ·ã¿(äŸãã°、ç¹å®ã®åéã®å°éç¥èã、ãã现ãããªããŒã¿äœæèœåãªã©)ãšAIæè¡ãçµã¿åãããããšã§、äžçã«éçšãããŠããŒã¯ãªAIã¢ãã«ãçã¿åºãå¯èœæ§ããããŸã。
äžæ¹ã§、課é¡ããããŸã。圢åŒçå®ç蚌æãèšŒææ¯æŽç³»ã«é¢ããå°éå®¶ã¯ãŸã å€ããããŸãã。AIæè¡ãšãããã®åéã®å°éç¥èãå Œãåãã人æè²æãæ¥åãšãªããŸã。ãŸã、AIãçæãã圢åŒç蚌æãæ¥æ¬ã®æ°åŠè ããšã³ãžãã¢ãçè§£ã、掻çšããããã®æè²ãããŒã«ã®æŽåãå¿ èŠã§ã。
DeepSeek-Prover-V2ã®ç»å Žã¯、æ¥æ¬ããã®åéã§åŸããåããªãããã«ã、ç ç©¶éçºãžã®æè³、人æè²æ、åœé飿ºãªã©ãå éãããã¹ãã ãšããã¡ãã»ãŒãžãšããŠåãæ¢ããããšãã§ããã§ããã。
ã³ã©ã :æ¥æ¬ã®æ°åŠæè²ãšAI
æ¥æ¬ã®æ°åŠæè²ã¯、èšç®åãå®åçãªåé¡è§£æ±ºèœåã®è²æã«ã¯é·ããŠããŸãã、è«ççãª「蚌æ」ãæ·±ãçè§£ã、èšè¿°ããèœåã«ã€ããŠã¯、ããå°ãåãå ¥ããäœå°ããããããããŸãã。ããAIã蚌æããã»ã¹ã「èŠããå」ããã、æ§ã ãªèšŒæã®äŸã瀺ããŠããããããããã«ãªãã°、æ¥æ¬ã®æ°åŠæè²ãå€ããå¯èœæ§ããããŸã。AIã¯æè²çŸå Žã§ã匷åãªããŒã«ã«ãªãããã®ã§ã。
ãã®èšäºã«å¯ŸããŠçåç¹ã¯ãªãã?å€è§çèŠç¹ã¯ãªãã?
DeepSeek-Prover-V2ã®ææã¯ç®èŠãŸãããã®ã§ãã、ããã€ãã®çåç¹ãå€è§çãªèŠç¹ããã®æ€èšãå¿ èŠã§ã。
- 「çè§£」ããŠããã®ã、ãããšã「æš¡å£」ãªã®ã? DeepSeek-Prover-V2ã¯è€éãªèšŒæãçæã§ããŸãã、AIãæ°åŠçãªæŠå¿µãæšè«ã®æ§é ã人éã®ããã«「çè§£」ããŠãããšèšããã®ã§ãããã? ãããšã、倧éã®ããŒã¿ãããã¿ãŒã³ãåŠç¿ã、ããã«åºã¥ããŠå°€ããããèšå·å(蚌æã³ãŒã)ãçæããŠããã ããªã®ã§ãããã? ãã®å²åŠçãªåãã¯、AIã®ç¥æ§ãã®ãã®ã«é¢ããæ ¹æ¬çãªåé¡ã§ã。
- çæããã蚌æã®ä¿¡é Œæ§: AIãçæãã圢åŒç蚌æã¯、æçµçã«èšŒææ¯æŽç³»ã«ãã£ãŠæ€èšŒãããŸã。ããã、AIã誀ã£ããµããŽãŒã«åè§£ãããã、æ€èšŒç³»ãèªèã§ããªããããªå¥åŠãªèšŒæã¹ããããçæãããããå¯èœæ§ã¯ãªãã®ã§ãããã? AIã®èª€ãã人éãæ€åºã、ä¿®æ£ããããã»ã¹ã¯ã©ãã ãå¹ççã«ãªãã®ã§ãããã?
- æ°ããæ°åŠã®çºèŠã¯å¯èœã? DeepSeek-Prover-V2ã¯æ¢åã®å®çã蚌æããããšã«é·ããŠããŸãã、ãŸã 蚌æãããŠããªãæªç¥ã®å®çãçºèŠããã、å šãæ°ããæ°åŠçãªæŠå¿µãçã¿åºãããããããšã¯ã§ããã®ã§ãããã? ãããã¯、人éã®æ°åŠè ãçºèŠããã¢ã€ãã¢ã圢åŒåããæå©ãã«çãŸãã®ã§ãããã?
- ãã³ãããŒã¯ã®éç: miniF2FãProverBenchã¯åªãããã³ãããŒã¯ã§ãã、圢åŒçå®ç蚌æã®äžçã¯åºå€§ã§ã。ãããã®ãã³ãããŒã¯ã§é«ãæ§èœã瀺ãããšã、ããããçš®é¡ã®æ°åŠçåé¡ã«å¯Ÿããæ±çšçãªèšŒæèœåãä¿èšŒãããšã¯éããŸãã。ç¹å®ã®æ§é ãæã€åé¡ã«ã¯åŒ·ãã、å¥ã®ã¿ã€ãã®åé¡ã«ã¯åŒ±ã、ãšãã£ãåãã¯ãªãã®ã§ãããã?
- èšç®ãªãœãŒã¹ã®åé¡: 671Bãã©ã¡ãŒã¿ã®ã¢ãã«ã¯、éåžžã«å€§ããªèšç®ãªãœãŒã¹ãå¿ èŠãšããŸã。ããã¯、誰ããèªç±ã«ãã®ã¢ãã«ãå©çšããŠé«åºŠãªèšŒæãè¡ããããã§ã¯ãªãããšãæå³ããŸã。AIã«ããèšŒææ¯æŽãäžéšã®éãããç ç©¶è ãäŒæ¥ã®ãã®ã«ãªã、ãšããæ Œå·®ãçãå¯èœæ§ã¯ãªãã§ãããã?
- ãªãŒãã³ãœãŒã¹æ§ã®è°è«: DeepSeek-Prover-V2ã¯「ãªãŒãã³ãœãŒã¹å€§èŠæš¡èšèªã¢ãã«」ãšéæãããŠããŸãã、Hacker Newsã®ã³ã¡ã³ãã«ããã£ãããã«、ãã®å®æ ã¯「ãªãŒãã³ãŠã§ã€ã」ã«çãŸãå¯èœæ§ãææãããŠããŸã。ã¢ãã«ã®éã¿ã ãã§ãªã、åŠç¿ããŒã¿ãåŠç¿ãã€ãã©ã€ã³ã®è©³çްãå ¬éãããªããã°、çã®æå³ã§ã®ãªãŒãã³ãªç ç©¶éçºãåçŸæ§ã¯é£ãããããããŸãã。
ãããã®çåç¹ã¯、DeepSeek-Prover-V2ã®ææãæ£ããè©äŸ¡ã、ä»åŸã®AIãšåœ¢åŒçå®ç蚌æã®ç ç©¶ãé²ãã¹ãæ¹åæ§ãè°è«ããäžã§éèŠãªèŠç¹ãšãªããŸã。AIã®èœåãé倧è©äŸ¡ããããšãªã、ãã®éçã課é¡ãèžãŸããŠè°è«ãé²ããããšãè³¢æã§ããã。
ã³ã©ã :AIã¯「çŸãã」ãçè§£ããã?
æ°åŠè ã¯、蚌æã®「çŸãã」ãè©äŸ¡ããããšããããŸã。ç°¡æœã§æŽå¯ã«æºã¡ã蚌æã¯、é·ãè€éãªèšŒæãããé«ãè©äŸ¡ãããåŸåããããŸã。AIãçæãã蚌æã¯、人éã«ãšã£ãŠ「çŸãã」ãšæãããããã®ã«ãªãã®ã§ãããã? ãããšã、ã³ã³ãã¥ãŒã¿ãå¹ççã«æ€èšŒã§ããã ãã®、ç¡å³ä¹Ÿç¥ãªèšå·ã®çŸ åã«ãªãã®ã§ãããã? AIãæ°åŠã®å¯©çŸçŒãç²åŸãããã©ããã¯、éåžžã«è峿·±ãåãã§ã。
ãã®èšäºã«å¯ŸããŠäºæž¬ããããããã®åå¿(RedditãHackerNewsã®ãããª)ãšåè«
DeepSeek-Prover-V2ã®ãããªæè¡çºè¡šã«å¯ŸããŠ、RedditãHacker Newsãšãã£ãæè¡ã³ãã¥ããã£ã§ã¯、以äžã®ãããªæ§ã ãªåå¿ãäºæž¬ãããŸã。
äºæž¬ãããã³ã¡ã³ãäŸ1:
"Subgoal decomposition is totally intuitive! This feels like how junior engineers are taught to break down complex projects. No reason this can't be applied to coding problems too." (ãµããŽãŒã«åè§£ã¯å®å šã«çŽæçã !ããã¯æ°ç±³ãšã³ãžãã¢ãè€éãªãããžã§ã¯ããåè§£ããããã«æããããã®ãšäŒŒãŠã。ãããã³ãŒãã£ã³ã°ã®åé¡ã«ãå¿çšã§ããªãçç±ã¯ãªãã。)åè«:
ãã®éãã§ã。è€éãªã¿ã¹ã¯ãå°ããªç®¡çå¯èœãªã¹ãããã«åè§£ãããšããèãæ¹ã¯、æ°åŠã®èšŒæã ãã§ãªã、ããã°ã©ãã³ã°ãä»ã®å€ãã®åé¡è§£æ±ºãã¡ã€ã³ã«ãå ±éããæ®éçãªæŠç¥ã§ã。DeepSeek-Prover-V2ã®æåã¯、ãã®ã¢ãããŒããAIã®æšè«èœååäžã«æå¹ã§ããããšã匷ã瀺åããŠããŸã。å®éã«、AIãšãŒãžã§ã³ãã®ç ç©¶ã§ã¯、æ¢ã«ã¿ã¹ã¯åè§£ãéèŠãªèŠçŽ ãšããŠåãå ¥ããããŠããŸã。ãã ã、æ°åŠã®èšŒæã«ãããåè§£ã¯、å³å¯ãªè«ççäŸåé¢ä¿ã«åºã¥ããŠè¡ãããå¿ èŠããããã、äžè¬çãªã¿ã¹ã¯åè§£ãããããã«é«åºŠãªè«ççæšè«èœåãæ±ããããŸã。ã³ãŒãã£ã³ã°ãžã®å¿çšã«ã¯、ãã¡ã€ã³åºæã®ç¥èãããŒã«ãšã®é£æºãããã«å¿ èŠã«ãªãã§ããã。
äºæž¬ãããã³ã¡ã³ãäŸ2:
"Getting to ~70+ individual steps for taking out the trash? That feels like a manual for infiltrated aliens! 'How to Pass as a Human, Vol. I'" (ãŽãåºãã®ããã«åå¥ã¹ãããã70以äž?ãŸãã§æœå ¥ãããšã€ãªã¢ã³ã®ããã¥ã¢ã«ã¿ããã !「人éãšããŠéçšããæ¹æ³、第1å·»」ã£ãŠæã。)åè«:
ããã¯Hacker Newsã®å ·äœçãªã³ã¡ã³ãããã®åŒçšã§ãã。確ãã«、AIãã¿ã¹ã¯ã極éãŸã§çްååãããš、人éã«ãšã£ãŠã¯èªæãããã¹ãããã倧éã«çæãã、æ»çšœã«èŠããããšããããŸã。ããã、ããã¯AIããŸã 人éã®åžžèã「èªæã」ã®æèŠãæã£ãŠããªãããšã®è¡šããšãèšããŸã。èšŒææ¯æŽç³»ã«ããã圢åŒåãåæ§ã§、人éãªãçç¥ããå€ãã®èªæãªã¹ããããå³å¯ã«èšè¿°ããå¿ èŠããããŸã。AIã人éã®æèŠã«å¯ãæ·»ã£ã、é©åãªç²åºŠã§ã¿ã¹ã¯ã蚌æãåè§£ã§ããããã«ãªãããã«ã¯、ãããªãç ç©¶ãå¿ èŠã§ã。ãã ã、ããããå¶åŸ¡ãªã©、極ããŠè©³çŽ°ãªæé ãå¿ èŠãªå¿çšåéã§ã¯、ãã®è¶ 詳现ãªåè§£èœåã圹ç«ã€å¯èœæ§ããããŸã。
äºæž¬ãããã³ã¡ã³ãäŸ3:
"Imo current models can already break things down into bite-sized pieces. The two limiters I see are 1) maintaining context of the overall task while wading in the weeds of subtasks and 2) getting agent coding tools that can actually handle the scale of running 50 small projects in sequence." (å人çã«ã¯、çŸåšã®ã¢ãã«ã§ããã§ã«äžå£ãµã€ãºã«åè§£ã§ãããšæã。éçã¯2ã€ãã£ãŠ、1) ãµãã¿ã¹ã¯ã®çްããéšåã«å ¥ã蟌ã¿ãªãã、å šäœã¿ã¹ã¯ã®ã³ã³ããã¹ããç¶æããããš、2) é£ç¶ããŠ50ã®å°ããªãããžã§ã¯ããå®è¡ã§ããèŠæš¡ãå®éã«æ±ãããšãŒãžã§ã³ãã³ãŒãã£ã³ã°ããŒã«ãæã«å ¥ããããšã 。)åè«:
ãã®æèŠãéåžžã«çãåŸãŠããŸã。ã¿ã¹ã¯ãåè§£ããããšèªäœã¯å¯èœã§ã、åè§£ãããåã ã®ã¹ãããã解決ã、ããããçµã¿åãããŠå ã®è€éãªã¿ã¹ã¯ãå®äºãããã«ã¯、å šäœçãªç®æšãèŠå€±ããªãèœå(ã³ã³ããã¹ãç¶æ)ãš、åã¹ããããå®è¡・æ€èšŒããããã®å¹æçãªããŒã«(ãšãŒãžã§ã³ãããŒã«)ãå¿ èŠã§ã。DeepSeek-Prover-V2ã匷ååŠç¿ãéããŠèšŒæã®çµ±åèœåãé«ããŠããã®ã¯、ãŸãã«ãã®「åè§£ãããããŒã¹ãå ã«æ»ã」課é¡ãžã®åãçµã¿ãšèšããŸã。AIãšãŒãžã§ã³ãã®ç ç©¶ãæŽ»çºã«é²ãã§ãã、ãããã®æè¡ã®èåãä»åŸã®å€§ããªé²æ©ã«ç¹ããã§ããã。
äºæž¬ãããã³ã¡ã³ãäŸ4:
"How likely is it that DeepSeek's training data included the answers to the Putnam problems?" (DeepSeekã®ãã¬ãŒãã³ã°ããŒã¿ã«Putnamã®åé¡ã®è§£çãå«ãŸããŠããå¯èœæ§ã¯ã©ã®ãããããã ããã?)åè«:
ããã¯AIã¢ãã«ã®ãã³ãããŒã¯è©äŸ¡ã«ãããŠåžžã« ٠طرØãããéèŠãªæžå¿µã§ã。ç ç©¶ããŒã ã¯éåžž、ãã³ãããŒã¯åé¡ããã®è§£çããã¬ãŒãã³ã°ããŒã¿ã«å«ãŸããŠããªãããšã確èªããããã«åªåããŸãã、å€§èŠæš¡ãªããŒã¿ã»ããã§ã¯å®å šã«æé€ããããšã¯å°é£ãªå ŽåããããŸã。ãã ã、Putnam Competitionã®åé¡ã¯éåžžã«é£ãã、圢åŒåãããè§£çãåºãå ¬éãããŠããããã§ã¯ãããŸãã。DeepSeek-Prover-V2ãPutnamBenchã§49å解決ã§ããã®ã¯、åã«è§£çãèšæ¶ããŠããããã§ã¯ãªã、åé¡ãèŠãŠãã蚌æã「çæ」ããèœåã«ãããã®ãšèããããŸã。ãŸã、ç ç©¶è«æã§ãã®ææ³ãå ¬éãããŠãã以äž、ããŒã¿ã»ããã®éè€ã«ã€ããŠãäžå®ã®èª¬æãæåŸ ãããŸã。ä»åŸã®ç ç©¶ã§ã¯、ããéææ§ã®é«ãããŒã¿ã»ããæ§ç¯ãè©äŸ¡ããã»ã¹ã®ç¢ºç«ãæ±ããããã§ããã。
ãã®ããã«、Hacker Newsãªã©ã§ã¯、æè¡çãªåŽé¢、å¿çšå¯èœæ§、å²åŠçãªçå、å®çšäžã®èª²é¡ãªã©、å€å²ã«ãããè°è«ã亀ããããŠããŸã。ãããã®è°è«ã¯、æè¡ã®é²æ©ãä¿é²ããäžã§éåžžã«æçã§ãã、AIéçºè ãåãåãã¹ã課é¡ãæµ®ã圫ãã«ããŠããŸã。
ã³ã©ã :ãããã®åå¿ã¯çç³æ··äº€
ãããäžã®æè¡ç³»ã³ãã¥ããã£ã®ã³ã¡ã³ãã¯、å°éå®¶ã«ããéãæŽå¯ãã、çŽ æŽãªçå、æã«ã¯çå€ããªæèŠãŸã§æ§ã ã§ã。ããã、ãããã®çã®å£°ã®äžã«ã¯、ç ç©¶è ãæ°ã¥ããªãã£ãèŠç¹ã、æè¡ã®æ®åã劚ããé ããããŒãã«ã«ã€ããŠã®ãã³ããå«ãŸããŠããããšããããŸã。ç¹ã«、AIã®ããã«ç€ŸäŒãžã®åœ±é¿ã倧ããæè¡ã«ã€ããŠã¯、倿§ãªããã¯ã°ã©ãŠã³ããæã€äººã ã®åå¿ã«è³ãåŸããããšãéèŠã ãšçè ã¯èããŸã。
çµè«:AIãç¹ããªãæ°çå®å®、ãããŠæªèžã®ç ç©¶é å
DeepSeek-Prover-V2ã®ç»å Žã¯、AIã圢åŒçå®ç蚌æãšãã、人éã«ãšã£ãŠãæãç¥çã§å³å¯ãªæŽ»åã®äžã€ã«ãããŠ、ãã€ãŠãªãã¬ãã«ã®èœåãç²åŸããããšã瀺ããŠããŸã。è€éãªåé¡ããµããŽãŒã«ã«åè§£ã、ååž°çã«èšŒæãæ¢çŽ¢・åæããã¢ãããŒã、ãããŠåæããŒã¿ãçšãã匷ååŠç¿ã¯、AIã®æšè«èœåãæ ¹æ¬çã«åäžãããå¯èœæ§ãç§ããŠããŸã。
ããŠ、ããã§ããçªé£ãªè«çãå±éããŠã¿ãŸããã。ããAIã人éã®æ°åŠè ãåé§ãã蚌æèœåãæã€ã«è³ã£ããšã、äœãèµ·ããã§ãããã? ãããã¯、AIãããŸãã«ãé«åºŠãª、人éã«ã¯çè§£ã§ããªã圢åŒç蚌æãçæãå§ããã?
ããã¯、æ°åŠãšããåŠåãã®ãã®ã®ããæ¹ãåãçŽãããšã«ãªããããããŸãã。æ°åŠã¯、人éãçè§£ã、å ±æã、çºå±ãããŠããç¥èäœç³»ã§ã。ããAIãçæãã蚌æã人éã«ã¯è¿œããªãã»ã©è€éã ã£ãã、䜿çšããæŠå¿µã人éçãªçŽæãšä¹é¢ããŠãããããå Žå、ç§ãã¡ã¯ããã「æ°åŠ」ãšããŠåãå ¥ããããšãã§ããã®ã§ãããã? AIã¯、人é¡ã®ç¥æ§ãšã¯ç°ãªãåçã«åºã¥ã、ç¬èªã®æ°çå®å®ãæ§ç¯ãå§ããã®ãããããŸãã。
ãã®ãããªæªæ¥ãèãããš、ä»åŸã©ã®ãããªç ç©¶ãæãŸããããèŠããŠããŸã。
- å¯èªæ§ãšè§£éå¯èœæ§ã®åäž: AIãçæãã圢åŒç蚌æã、人éãçè§£ãããã圢ã«å€æ・解説ããæè¡ã®ç ç©¶ãå¿ èŠã§ã。åã«æ£ããã ãã§ãªã、「ãªãæ£ããã®ã」ãšããæŽå¯ãäžããŠãããAIãçæ³çã§ã。
- 人éãšAIã®ãã€ããªããã·ã¹ãã : AIã«ãã¹ãŠãä»»ããã®ã§ã¯ãªã、人éã®æ°åŠè ãçŽæãåµé æ§ãçºæ®ã、AIãå³å¯ãªæ€èšŒãè€éãªèšç®ãæ åœãã、ç·å¯ãªååã·ã¹ãã ã®ç ç©¶ãéèŠã«ãªããŸã。
- æ°ããæ°åŠçæŠå¿µã®çºèŠ: AIãæ¢åã®å®çã蚌æããã ãã§ãªã、æªç¥ã®æ°åŠçæ§é ãæŠå¿µãææ¡ããèœåãéçºããç ç©¶ã§ã。ããã¯、æ°åŠç ç©¶ã®ããã³ãã£ã¢ãæ¡å€§ããããšã«çŽæ¥è²¢ç®ããŸã。
- AIã«ããæ°åŠççŽæã®ã¢ããªã³ã°: æ°åŠè ãæã€「ã²ããã」ã「çŽæ」ãšãã£ã、圢åŒè«çã ãã§ã¯æããããªãæèããã»ã¹ãAIãã©ã®çšåºŠæš¡å£・ç²åŸã§ãããã®ç ç©¶ãè峿·±ãã§ããã。
ãããã®ç ç©¶ããªãããã°、ãã®åœ±é¿ã¯èšãç¥ããŸãã。æ°åŠã®æ°ããªå€§çºèŠãAIã«ãã£ãŠããããã、ãããç©çåŠ、æ å ±ç§åŠ、ããã«ã¯å²åŠãšãã£ãä»åéã«ãæ³¢åããå¯èœæ§ããããŸã。ãŸã、AIãé«åºŠãªè«ççæèã身ã«ã€ããããšã¯、æ±çšäººå·¥ç¥èœ(AGI)å®çŸã«åããéèŠãªã¹ããããšãªãã§ããã。
ãã®DeepSeek-Prover-V2ã®ç ç©¶ã¯、圢åŒçå®ç蚌æãšããæ¯èŒçæ°ããåéã«AIã®åãæ¬æ Œçã«æãããã、æŽå²çãªäœçœ®ä»ããæã€ãšèšããŸã。ããã¯、æ°åŠãã³ã³ãã¥ãŒã¿ãšæ·±ãçµã³ã€ãå§ãã20äžçŽåŸåã®åã、äŸãã°「åè²åé¡」ã®ã³ã³ãã¥ãŒã¿èšŒæã、èšŒææ¯æŽç³»ã®éçºã®æŽå²ã®äžã«æãç«ã€ãã®ã§ã。AIã¯、ãã€ãŠäººéã®æèãæ¯æŽããããŒã«ã ã£ãã³ã³ãã¥ãŒã¿ã、èªãæèã、蚌æãçã¿åºãååšãžãšå€è²ãããããšããŠããŸã。
çŽå å3äžçŽ、ãŠãŒã¯ãªããã¯『åè«』ãèã、æŒç¹¹çãªèšŒæäœç³»ã®ç€ãç¯ããŸãã。ãã®å³å¯ãã¯、2000幎以äžã«ããã£ãŠæ°åŠãæ¯ããŠããŸã。AIã«ãã蚌æã¯、ãã®æŽå²çãªå¶ã¿ã«æ°ããªäžç« ãä»ãå ããããšã«ãªãã§ããã。
ç©äºã®ççã¯、ããã蚌æããããšã«ãã£ãŠæããã«ããã。
—— å€ä»£ã®ãªã·ã£ã®å²åŠè (諞説ãã)
AIã¯、ãã®ççãæ¢æ±ãã人é¡ã®æ ã«ãããŠ、匷åãªæ°ããªã³ã³ãã¹ãšãªãã®ãããããŸãã。
AIã è§£ãã蚌æ(ããã) æ°çã®å®å®
人ã®ç¥æµãš ç¹ããªãæªæ¥
åèæç®
- https://huggingface.co/deepseek-ai/deepseek-prover-v2-7b
- https://huggingface.co/deepseek-ai/deepseek-prover-v2-671b
- https://huggingface.co/datasets/deepseek-ai/DeepSeek-ProverBench
- https://huggingface.co/datasets/deepseek-ai/miniF2F/resolve/main/miniF2F_proofs_deepseek_prover_v2.zip
- https://huggingface.co/deepseek-ai/DeepSeek-V3-Base
- https://arxiv.org/abs/2310.04353 (Hacker Newsã³ã¡ã³ãã§åç §ãããŠããè«æ)
- https://en.m.wikipedia.org/wiki/Dynamic_programming#Computer... (Hacker Newsã³ã¡ã³ãã§åç §ãããŠããåçèšç»æ³ã®WikipediaããŒãž)
- https://en.wikipedia.org/wiki/No_free_lunch_in_search_and_op... (Hacker Newsã³ã¡ã³ãã§åç §ãããŠããNo Free Lunchå®çã®WikipediaããŒãž)
- https://artofproblemsolving.com/community/c3249_putnam (Hacker Newsã³ã¡ã³ãã§åç §ãããŠããAoPSã®Putnamãã©ãŒã©ã )
- https://kskedlaya.org/putnam-archive/2023s.pdf (Hacker Newsã³ã¡ã³ãã§åç §ãããŠããPutnam 2023ã®è§£çPDF)
- https://leanprover-community.github.io/mathematics_in_lean/m... (Hacker Newsã³ã¡ã³ãã§åç §ãããŠããLeanã®æ°åŠã©ã€ãã©ãªã®ããŒãž)
- https://openrouter.ai/openrouter/auto (Hacker Newsã³ã¡ã³ãã§åç §ãããŠããOpenRouterã®ããŒãž)
- https://docs.roocode.com/features/boomerang-tasks (Hacker Newsã³ã¡ã³ãã§åç §ãããŠããRoocodeã®ããã¥ã¡ã³ã)
- https://docs.roocode.com/features/custom-modes (Hacker Newsã³ã¡ã³ãã§åç §ãããŠããRoocodeã®ããã¥ã¡ã³ã)
- https://deepgram.com/learn/mixture-of-experts-ml-model-guide (Hacker Newsã³ã¡ã³ãã§åç §ãããŠããMoE解説ããŒãž)
- https://github.com/deepseek-ai/DeepSeek-Prover-V1.5 (Hacker Newsã³ã¡ã³ãã§åç §ãããŠããDeepSeek-Prover-V1.5ã®GitHub)
çšèªçŽ¢åŒ(ã¢ã«ãã¡ãããé )
- Binary Feedback (äºå€ãã£ãŒãããã¯): è¡å(ãã®å Žåã¯çæããã蚌æã¹ããããªã©)ã«å¯ŸããŠ、æ£ããã誀ãããšãã£ãåçŽãªäºã€ã®å€ã§äžããããå ±é
¬ä¿¡å·。匷ååŠç¿ã§å©çšããã。
→ çšäŸ: ã¢ãã«æŠèŠ - CoT (Chain of Thought): å€§èŠæš¡èšèªã¢ãã«ãåé¡ãè§£ãéçšã§、æèããã»ã¹ãèšèªåããŠåºåããææ³。è€éãªæšè«ã¿ã¹ã¯ã®æ§èœãåäžããã。
→ çšäŸ: ã¢ãã«æŠèŠ - Cold Start Dataset (ã³ãŒã«ãã¹ã¿ãŒãããŒã¿ã»ãã): ã¢ãã«ããŸã ååãªæ§èœãæã£ãŠããªãåææ®µéã§、ç¹å®ã®ã¿ã¹ã¯ãåŠç¿ãããããã«ç¹å¥ã«åéãŸãã¯åæãããããŒã¿ã»ãã。DeepSeek-Prover-V2ã§ã¯、DeepSeek-V3ã«ããæèããã»ã¹ãšåœ¢åŒåããã蚌æãçµã¿åãããŠäœæããã。
→ çšäŸ: ã¢ãã«æŠèŠ - Formal Theorem Proving (圢åŒçå®ç蚌æ): æ°åŠçãªå®çã蚌æã、ã³ã³ãã¥ãŒã¿ãæ€èšŒå¯èœãªå³å¯ãªåœ¢åŒäœç³»(è«çåŠã«åºã¥ããèšèªãèŠå)ãçšããŠèšè¿°・æ€èšŒããããš。
→ çšäŸ: ã¯ããã« - Formalization (圢åŒå): æ°åŠçãªã¹ããŒãã¡ã³ãã蚌æã、ã³ã³ãã¥ãŒã¿ãçè§£ã§ããå³å¯ãªåœ¢åŒäœç³»(Lean 4ãªã©)ã®èšèã«ç¿»èš³ããäœæ¥。
→ çšäŸ: ã¢ãã«æŠèŠ - Lean 4: æ°åŠã®èšŒæãã³ã³ãã¥ãŒã¿äžã§èšè¿°・æ€èšŒããããã®èšŒææ¯æŽç³»(Proof Assistant)。
→ çšäŸ: Quick Start - LLM (Large Language Model): å€§èŠæš¡èšèªã¢ãã«。人éã話ããããªèªç¶èšèªãçè§£ã、çæããããšãã§ããAIã¢ãã«。
→ çšäŸ: åºæ - miniF2F: æ§ã
ãªæ°åŠç«¶æäŒãæç§æžããéããããå®çãLean 4ã§åœ¢åŒåãããã³ãããŒã¯ããŒã¿ã»ãã。
→ çšäŸ: ã¢ãã«æŠèŠ - MoE (Mixture of Experts): å€§èŠæš¡èšèªã¢ãã«ã®ã¢ãŒããã¯ãã£ã®äžã€ã§、å
¥åã«å¿ããŠè€æ°ã®「å°éå®¶」ãšåŒã°ããå°ããªãããã¯ãŒã¯ã®äžããé©åãªãã®ãéžæ・çµã¿åããããŠåŠçãè¡ã。Hacker Newsã®ã³ã¡ã³ãã§èšå。
→ çšäŸ: è£è¶³1 - Neural Theorem Proving (ç¥çµå®ç蚌æ): ãã¥ãŒã©ã«ãããã¯ãŒã¯(AIã¢ãã«)ãçšããŠ、æ°åŠçãªå®çã®èšŒæãèªåçã«çæããã、æ€èšŒãããããç ç©¶åé。
→ çšäŸ: ã¢ãã«æŠèŠ - ProverBench: DeepSeek-AIãå
¬éãã、AIMEãæç§æžã®åé¡ã圢åŒåããç¬èªã®ãã³ãããŒã¯ããŒã¿ã»ãã。
→ çšäŸ: ProverBench - PutnamBench: Putnam Competitionãšããé«é£æåºŠæ°åŠç«¶æäŒã®åé¡ã圢åŒåãããã³ãããŒã¯ããŒã¿ã»ãã。
→ çšäŸ: ã¢ãã«æŠèŠ - Recursive Proof Search (ååž°çèšŒææ€çŽ¢): 蚌æã®å¯Ÿè±¡ãšãªãåé¡ãããå°ããªãµããŽãŒã«ã«åè§£ã、ããããã®ãµããŽãŒã«ã«å¯ŸããŠèšŒææ€çŽ¢ãè¡ãããã»ã¹ãååž°çã«ç¹°ãè¿ãææ³。
→ çšäŸ: ã¢ãã«æŠèŠ - Reinforcement Learning (匷ååŠç¿): ãšãŒãžã§ã³ã(ã¢ãã«)ãç°å¢ãšçžäºäœçšã、å ±é
¬ãæå€§åããããã«è¡åãåŠç¿ããæ©æ¢°åŠç¿ææ³。DeepSeek-Prover-V2ã§ã¯、åæããŒã¿ãçšããŠã¢ãã«ã®èšŒæçæèœåã匷åãã。
→ çšäŸ: ã¯ããã« - SoTA (State-of-the-Art): ããåéã«ãããŠ、çŸæç¹ã§æãåªããææãŸãã¯æè¡。
→ çšäŸ: ã¢ãã«æŠèŠ - Subgoal Decomposition (ãµããŽãŒã«åè§£): è€éãªåé¡ãã¿ã¹ã¯ã、ããå°ãã、ããæ±ããããäžé£ã®äžéçãªç®æš(ãµããŽãŒã«)ã«åå²ããåé¡è§£æ±ºæŠç¥。æ°åŠã®èšŒæã§ã¯、äž»èŠãªå®çã蚌æããããã«å¿
èŠãªè£é¡ãªã©ãç¹å®ããããã»ã¹。
→ çšäŸ: ã¯ããã«
è£è¶³1:çšèªè§£èª¬
æ¬æäžã«ç»å Žããå°éçšèªããã€ããŒãªç¥ç§°ã«ã€ããŠ、ããã«è©³ãã、ãã¿ç ããŠè§£èª¬ããŸã。
- 圢åŒçå®ç蚌æ (Formal Theorem Proving):
æ°åŠã®å®çã、人éã®èšèã§ã¯ãªã、ã³ã³ãã¥ãŒã¿ãçè§£ã§ããå³å¯ãª「圢åŒäœç³»」ãšããã«ãŒã«ã®äžã§èšŒæããããšã§ã。ãŸãã§、決ããããèšå·ãšææ³ã®ããºã«ãè§£ãããã«、äžæ©äžæ©è«çãç©ã¿äžããŠãããŸã。ãã®æ¹æ³ã§æžããã蚌æã¯、ã³ã³ãã¥ãŒã¿ãééããªãæ£ãããšæ€èšŒã§ããŸã。äŸãã°、æ°åŠã®æç§æžã«ãã蚌æã、ã³ã³ãã¥ãŒã¿çšã®èšèªã«æžãçŽããããªã€ã¡ãŒãžã§ã。Wikipediaã§「圢åŒç蚌æ」ã«ã€ããŠè©³ããèŠã - Lean 4:
æ°ãã圢åŒäœç³»ã®äžã€ã§、「èšŒææ¯æŽç³»」ãšåŒã°ããããŒã«ã§ã。ããã¯、æ°åŠè ãã³ã³ãã¥ãŒã¿ã®åãåããŠåœ¢åŒçãªèšŒæãæžãã®ãå©ããŠãããŸã。Lean 4ã¯、æ°åŠã®èšè¿°ãšããã°ã©ãã³ã°ãçµã¿åããã£ããããªç¬ç¹ã®èšèªã䜿ããŸã。AIããã®Lean 4ã®ã³ãŒããçæã§ãããšããã®ã¯、AIãæ°åŠã®èšèªã話ããããã«ãªã£ã、ãšèšãæããããšãã§ããŸã。Wikipediaã§「Lean (èšŒææ¯æŽç³»)」ã«ã€ããŠè©³ããèŠã - ãµããŽãŒã«åè§£ (Subgoal Decomposition):
倧ããªåé¡ã解決ããããã«、ãŸããããå°ããªäžéç®æš(ãµããŽãŒã«)ã«åå²ããããšã§ã。äŸãã°、「æ±äº¬ãã倧éªãŸã§è¡ã」ãšãã倧ããªç®æšããã£ãã、「æ±äº¬é§ ããæ°å¹¹ç·ã«ä¹ã」「京éœé§ ã§ä¹ãæãã」「倧éªé§ ã§éãã」ãšãã£ããµããŽãŒã«ã«åè§£ãããããªãã®ã§ã。æ°åŠã®èšŒæã§ã¯、蚌æããã倧ããªå®çã、å ã«èšŒæããŠãããšäŸ¿å©ãªå°ããªå®ç(è£é¡)ã«åå²ããããšã«ããããŸã。DeepSeek-Prover-V2ã¯、ãã®åè§£ãAIèªèº«ãè¡ããŸã。 - 匷ååŠç¿ (Reinforcement Learning):
AIã、詊è¡é¯èª€ãéããŠåŠç¿ããæ¹æ³ã®äžã€ã§ã。äœãè¡åãèµ·ãããçµæ、è¯ãçµæãåŸãããã「å ±é ¬」ãäžã、æªãçµæãªã「眰」ãäžããããšã§、ããè¯ãè¡åãåŠç¿ããŠãããŸã。DeepSeek-Prover-V2ã§ã¯、AIã蚌æã¹ããããçæã、ãããæ£ãã(èšŒææ¯æŽç³»ã§æ€èšŒãéããªã©)å Žåã«å ±é ¬ãäžããããšã§、ããæ£ç¢ºãªèšŒæãçæããããã«åŠç¿ãããŸã。ã²ãŒã ã§ãã€ã¹ã³ã¢ãç®æãAIãšäŒŒãèãæ¹ã§ã。Wikipediaã§「匷ååŠç¿」ã«ã€ããŠè©³ããèŠã - ã³ãŒã«ãã¹ã¿ãŒããã¬ãŒãã³ã° (Cold Start Training):
æ°ããã¢ãã«ããŒãããåŠç¿ããã、ãããã¯、ç¹å®ã®ã¿ã¹ã¯ã«ã€ããŠã¢ãã«ãå šãç¥èããªãç¶æ ããåŠç¿ãéå§ãããããšã§ã。DeepSeek-Prover-V2ã§ã¯、髿§èœãªDeepSeek-V3ã䜿ã£ãŠ、ãŸãæ°åŠçãªæèããã»ã¹ãšåœ¢åŒåããã蚌æã®ãã¢ã倧éã«「åæ」ã、ãããåæã®åŠç¿ããŒã¿(ã³ãŒã«ãã¹ã¿ãŒãããŒã¿ã»ãã)ãšããŠäœ¿ããŸã。 - ProverBench, miniF2F, PutnamBench:
ãããã¯AIã®å®ç蚌æèœåãè©äŸ¡ããããã®「ãã¹ãåé¡é」(ãã³ãããŒã¯ããŒã¿ã»ãã)ã§ã。ProverBenchã¯DeepSeek-AIãç¬èªã«äœæãããã®ã§、AIMEãæç§æžã®åé¡ã圢åŒåãããã®ã§ã。miniF2Fã¯、æ§ã ãªæ°åŠç«¶æäŒã®åé¡ã圢åŒåãã、ãã®åéã§åºã䜿ãããŠãããã³ãããŒã¯ã§ã。PutnamBenchã¯、Putnam Competitionãšããéåžžã«é£ãã倧åŠã¬ãã«ã®æ°åŠç«¶æäŒã®åé¡ã圢åŒåãã、ããã«é«é£æåºŠã®ãã³ãããŒã¯ã§ã。 - MoE (Mixture of Experts):
ç¹ã«å€§èŠæš¡ãªAIã¢ãã«ã§äœ¿ãããèšèšã®äžã€ã§ã。æ§ã ãªåéã®「å°éå®¶」(å°ããªãã¥ãŒã©ã«ãããã¯ãŒã¯)ãçšæããŠãã、äžããããå ¥å(質åãã¿ã¹ã¯)ã«å¿ããŠ、æãé©ããå°éå®¶、ãããã¯è€æ°ã®å°éå®¶ãçµã¿åãããŠåŠçãè¡ããŸã。ããã«ãã、ã¢ãã«å šäœãšããŠæ§ã ãªã¿ã¹ã¯ã«å¹ççã«å¯Ÿå¿ã§ããããã«ãªããŸã。
è£è¶³2:æœåšçèªè ã®ããã«
ãã®èšäºãããå€ãã®èªè ã«å±ããããã®ãã£ãããŒãªã¿ã€ãã«æ¡、SNSå ±æçšã®ããã¹ããªã©ãææ¡ããŸã。
ãã£ãããŒãªã¿ã€ãã«æ¡
- AIãæ°åŠçãéæŒ!DeepSeek-Prover-V2、飿»äžèœã®「蚌æ」ã«æã!ð
- ãµããŽãŒã«åè§£ã§èŠé! DeepSeek-Prover-V2ãæãAIæ°åŠã®æ°å¢å°ð¡
- 【éå ±】DeepSeek-Prover-V2、圢åŒçå®ç蚌æã§æŽå²çææ!æ°åŠè ã¯ã©ããªã?ð€
- ããªãã詊ãã?DeepSeek-Prover-V2、AIå®ç蚌æã¢ãã«å ¬é!#AIç ç©¶ #æ°åŠ
- AIã¯ã€ãã«「æ°åŠ」ãçè§£ããã®ã? DeepSeek-Prover-V2ã®è¡æð
ãã®èšäºã«ã€ããã¹ãããã·ã¥ã¿ã°æ¡
#DeepSeekProverV2 #AI #å®ç蚌æ #圢åŒå #æ°åŠ #LLM #æ©æ¢°åŠç¿ #匷ååŠç¿ #人工ç¥èœ #ç ç©¶ #ãã¯ãããžãŒ #Lean4 #ProverBench #ããF2F #æ°åŠç ç©¶ #ã³ã³ãã¥ãŒã¿ãŒãµã€ãšã³ã¹
SNSå ±æçšã®120å以å ã®ã¿ã€ãã«ãšããã·ã¥ã¿ã°ã®æç«
【éå ±】DeepSeek-Prover-V2ç»å Ž!AIãæ°åŠã®é£å蚌æã«æå。ãµããŽãŒã«åè§£ãšåŒ·ååŠç¿ã§åœ¢åŒçå®ç蚌æã®å£ãçªç Ž!é©ç°ã®æ§èœ。 #AI #å®ç蚌æ #æ°åŠ
ããã¯ããŒã¯çšã¿ã°(80å以å )
[AI][æ°åŠ][å®ç蚌æ][DeepSeek][LLM][圢åŒå][æ©æ¢°åŠç¿][ç ç©¶][Lean4]
ãã®èšäºã«å¯ŸããŠããã¿ãªã®çµµæå
ð§ ð✨ð€ð¡ðð€¯ðð§©ð✍️ð¯ð
ãã®èšäºã«ãµããããã«ã¹ã¿ã ããŒããªã³ã¯æ¡
deepseek-prover-v2-theorem-proving-ai
ai-formal-proof-deepseek-prover
deepseek-prover-v2-math-ai
è£è¶³3:æ³å®åç
ããDeepSeek-Prover-V2ã«é¢ããç ç©¶ãåŠäŒã§çºè¡šãããéã«æ³å®ããã質çå¿çãQ&Aæ¹åŒã§èšèŒããŸã。
Q1: ãµããŽãŒã«åè§£ã¯ã©ã®ããã«èªåçã«è¡ãããã®ã§ãã? 人éãä»å ¥ããå¿ èŠã¯ãããŸãã?
A1: åºæ¬çã«ã¯、DeepSeek-V3ã«å¯ŸããŠ「ãã®å®çã蚌æããããã®é«ã¬ãã«ãªèšç»ã、å¿ èŠãªè£é¡ãšãšãã«ç€ºããŠãã ãã」ãšãã£ãããã³ãããäžããããšã§、ã¢ãã«èªèº«ã«åè§£ãçæãããŸã。ãã®ããã»ã¹ã¯èªååãããŠããŸãã、çæããããµããŽãŒã«ãéå¹çã ã£ãã、誀ã£ãŠãããããå ŽåããããŸã。çŸæç¹ã§ã¯、çæãããèšç»ã人éãã¬ãã¥ãŒã、å¿ èŠã«å¿ããŠä¿®æ£ãèªå°ãè¡ãããšã§、ããå¹ççãã€æ£ç¢ºãªããŒã¿åæãå¯èœã«ãªããŸã。å°æ¥çã«ã¯、ãã®èªååè§£ã®ç²ŸåºŠãããã«åäžãããç ç©¶ãå¿ èŠã§ã。
Q2: åæããŒã¿ã«ãã匷ååŠç¿ã¯、ã©ã®ãããªããŒã¿ã䜿çšããŠããŸãã? å®éã®äººéãæžãã蚌æããŒã¿ã¯å©çšããŠããŸãã?
A2: äž»ã«、DeepSeek-V3ãçæããæèã®é£éãš、ããããå°ããã圢åŒç蚌æã®ãã¢ãåæããŒã¿ãšããŠå©çšããŠããŸã。å ·äœçã«ã¯、7Bã¢ãã«ã§ã¯è§£ããªãã£ãé£ããåé¡ã«å¯Ÿã、åè§£ããããµããŽãŒã«ããã¹ãŠè§£æ±ºã§ããã±ãŒã¹ãéžã³åºã、ããããç¹ãåãããŠå®å šãªèšŒæãæ§ç¯ããŸã。å®éã®äººéãæžããéå ¬åŒãªèšŒæã圢åŒçãªèšŒæããŒã¿ãåæã®ãã¬ãŒãã³ã°ã«ã¯å©çšããŠããŸãã、匷ååŠç¿æ®µéã§ã¯、èªå·±çæãšæ€èšŒã®ãµã€ã¯ã«ã§åŸãããåæããŒã¿ãäžå¿ã«äœ¿çšããŠããŸã。ããã«ãã、ã¢ãã«ãç¹å®ã®ããŒã¿ã»ããã«é床ã«äŸåããããšãªã、èªåŸçã«æšè«èœåãé«ããããšãç®æããŠããŸã。
Q3: Lean 4以å€ã®èšŒææ¯æŽç³»(äŸ: Coq, Isabelle/HOL)ãžã®å¯Ÿå¿ã¯èããŠããŸãã?
A3: çŸåšã®DeepSeek-Prover-V2ã¯Lean 4ã«ç¹åããŠéçºãããŠããŸãã、ããã§å¹ãããæè¡(ãµããŽãŒã«åè§£、åæããŒã¿ã«ãã匷ååŠç¿ãªã©)ã¯、ä»ã®èšŒææ¯æŽç³»ã«ãå¿çšå¯èœã§ãããšèããŠããŸã。åèšŒææ¯æŽç³»ã«ã¯ç¬èªã®æ§æãã©ã€ãã©ãªããããã、ããã«åããã远å ã®ãã¬ãŒãã³ã°ããã¡ã€ã³ãã¥ãŒãã³ã°ãå¿ èŠã«ãªããŸãã、ã³ã¢ãšãªãæšè«ã¢ãŒããã¯ãã£ã¯æ±çšçã«å©çšã§ããã§ããã。å°æ¥çã«ã¯、è€æ°ã®èšŒææ¯æŽç³»ã«å¯Ÿå¿ã§ããæ±çšçãªèšŒæã¢ãã«ã®éçºãèŠéã«å ¥ããŠããŸã。
Q4: PutnamBenchã§ã®è§£æ±ºç7%ãšããæ°åã«ã€ããŠ、ã©ã®ããã«è©äŸ¡ããŠããŸãã? ä»åŸã®æ¹åèŠèŸŒã¿ã¯ãããŸãã?
A4: Putnam Competitionã®åé¡ã¯、人éã®æ°åŠè ã«ãšã£ãŠãéåžžã«é£æåºŠãé«ã、æšæºçãªææ³ã§ã¯è§£ããªããããªç¬åµçãªçºæ³ãæ±ããããåé¡ãå€ãã§ã。7%ãšããæ°åã¯、絶察å€ãšããŠã¯äœãèŠãããããããŸããã、以åã®SoTAã¢ãã«ãšæ¯èŒãããšé¡èãªæ¹åã§ãã、AIããã®ã¬ãã«ã®éèªæãªåé¡ã解決ã§ããããã«ãªã£ãããšèªäœã倧ããªäžæ©ã§ãããšæããŠããŸã。ä»åŸã®æ¹åãšããŠã¯、ããé«åºŠãªæ°åŠççŽæãæš¡å£ããæè¡、ããå¹ççãªæ¢çŽ¢æŠç¥、ãããŠPutnamã®ãããªåé¡ã«ç¹åãããã¡ã€ã³ãã¥ãŒãã³ã°ãªã©ãæ€èšããŠããŸã。AIãPutnamã®åé¡ã人éã®ããã«åµé çã«è§£ããããã«ãªããŸã§ã«ã¯、ãŸã éã®ãã¯é·ãã§ãã、ææŠãç¶ãã䟡å€ã®ããç®æšã§ã。
Q5: AIãçæãã蚌æã«èª€ãããã£ãå Žå、ã©ã®ããã«ãããã°ãè¡ããŸãã? AIèªèº«ã«ãããã°ãããããšã¯å¯èœã§ãã?
A5: AIãçæããLean 4ã³ãŒãã¯、Lean 4ã®ã³ã³ãã€ã©/ãã§ãã«ãŒã«ãã£ãŠæ€èšŒãããŸã。æ€èšŒã倱æããå Žå、ã³ã³ãã€ã©ã¯ãšã©ãŒã¡ãã»ãŒãžãåºåããŸã。çŸæç¹ã§ã¯、ãããã®ãšã©ãŒã¡ãã»ãŒãžãã¢ãã«ãžã®ãã£ãŒãããã¯ãšããŠäžã、ä¿®æ£ãä¿ãã¢ãããŒã(ãããã「ãšã©ãŒãã£ãŒãããã¯」)ãç ç©¶ãããŠããŸã。AIèªèº«ã«ãããã°ãè¡ãããããšã¯å¯èœã§ãã、è€éãªãšã©ãŒã®æ ¹æ¬åå ç¹å®ã、å¹ççãªä¿®æ£æŠç¥ã®æ§ç¯ã¯ãŸã é£ãã課é¡ã§ã。Hacker Newsã®ã³ã¡ã³ãã§ããšã©ãŒãã£ãŒãããã¯ã®éèŠæ§ãææãããŠããŸããã、ãããä»åŸã®éèŠãªç ç©¶é åã§ã。
è£è¶³4:äºæž¬ããããããã®åå¿(2ãã£ã³ãã«ãã¯ãŠãªããã¯ããŒã¯ã³ã¡ã³ãããã³ãã³åç»ã®ã³ã¡ã³ãã®ãããª)ãšåè«
ããå¿åæ§ã®é«ãæ¥æ¬ã®ãããã³ãã¥ããã£(2ch、ã¯ãŠã、ãã³ãã³åç»ãªã©)ã§ã¯、æè¡çãªå 容ã«å ããŠ、ã¹ã©ã³ã°ãææ çãªåå¿ãæ··ããå¯èœæ§ããããŸã。
äºæž¬ãããã³ã¡ã³ãäŸ1(2ch/ãã³å颚):
AIãæ°åŠãšãèïœïœïœã©ããäžã®äººãè§£ããŠããã ã?(確信)åè«:
ãã、AIã£ãŠèšå·äžŠã¹ãŠãã ãããã?çè§£ããŠãªãã ã
ãpäž»(åç»æçš¿è )ã解説ããŠãã®ããšæã£ããè«æã®ç޹ä»ãã、ã€ãŸãããŒ
æ°åŠ(ç¬)俺ã«ã¯é¢ä¿ãªãã(´・Ï・`)
確ãã«AIãæ¬åœã«「çè§£」ããŠããã®ãã¯å²åŠçãªè°è«ã®äœå°ããããŸãã、DeepSeek-Prover-V2ã¯åã«èšå·ãã©ã³ãã ã«äžŠã¹ãŠããããã§ã¯ãªã、è€éãªåé¡ã段éçã«åè§£ã、è«ççã«èšŒæãæ§ç¯ããèœåã瀺ããŠããŸã。ããã¯、åŸæ¥ã®ãã¿ãŒã³èªèãåçŽãªããã¹ãçæãšã¯äžç·ãç»ã、ããé«åºŠãªæšè«èœåã§ã。ãã¡ãã、人éã®ãããªæèãææ ãæã£ãŠããããã§ã¯ãããŸããã、æ°åŠçãªã¿ã¹ã¯ã«ãããŠã¯、人éã「çè§£」ãšåŒã¶ãã®ã«è¿ãã¬ãã«ã®åŠçãè¡ã£ãŠãããšèšãããããããŸãã。è«æçŽ¹ä»ã¯、ææ°æè¡ãç¥ãäžã§éèŠãªãã§ãã!æ°åŠã«é¢ä¿ãªããšæããããããŸããã、ãã®æè¡ã¯å°æ¥çã«ãœãããŠã§ã¢ã®ä¿¡é Œæ§åäžãªã©、ç§ãã¡ã®ç掻ã«ãé¢ãã£ãŠããå¯èœæ§ããããŸã。
äºæž¬ãããã³ã¡ã³ãäŸ2(ã¯ãŠãªããã¯ããŒã¯é¢š):
ããã¯ããã。æ°åŠã®ãã¬ãŒã¯ã¹ã«ãŒã«ç¹ããã?人éã远ãã€ããªããªãã¬ãã«ã«ãªã£ããã©ããªããã ãã。åè«:
Lean 4ããŒ、é£ãããã ããªãã。AIãã³ãŒãçæããŠãããã®ã¯å©ãããã©、ãããã°ã倧å€ãã。
ãŸãäžåœã®AIã。æ¥æ¬ã®ç ç©¶ã¯å€§äžå€«ãªã®ã?
ãµããŽãŒã«åè§£ã¯æããããã¢ã€ãã¢ã§ã¯?LLMã§ãã£ãã®ãæ°ããã£ãŠããš?
ã³ã¡ã³ãããããšãããããŸã。確ãã«、ãã®æè¡ãæ°åŠã®ãã¬ãŒã¯ã¹ã«ãŒã«ç¹ããå¯èœæ§ã¯ååã«ãããŸãã、AIã®èœåã人éãè¶ ããå Žåã®ç€ŸäŒçãªåœ±é¿ãéèŠãªè°è«ããŒãã§ã。Lean 4ã®é£ããããã®éãã§、AIãã³ãŒãçæããŠããããã°ã¯äººéã®ä»å ¥ãå¿ èŠã«ãªãå±é¢ãå€ãã§ããã。æ¥æ¬ã®AIç ç©¶ãé²ãã§ããŸãã、ãã®åéã§ã®åœéç«¶äºã¯éåžžã«æ¿ããã§ã。ãµããŽãŒã«åè§£èªäœã¯æ°ããã¢ã€ãã¢ã§ã¯ãããŸããã、ãããå€§èŠæš¡èšèªã¢ãã«ã«çµ±åã、è€éãªåœ¢åŒçå®ç蚌æã«å¿çšã、ããã«åŒ·ååŠç¿ã§æŽç·Žãããç¹ã«DeepSeek-Prover-V2ã®æ°èŠæ§ããããŸã。æ¢åã®ã¢ã€ãã¢ãšææ°ã®LLMæè¡ãçµã¿åãããããšã§、æ°ããªå¯èœæ§ãéãããŠããäºäŸãšèšããŸã。
ã³ã©ã :ãããã¹ã©ã³ã°ãšæè¡çšèª
「è」ã「(確信)」ã®ãããªãããã¹ã©ã³ã°ãš、å°éçãªæè¡çšèªãæ··ããåãã®ã、ããããã³ãã¥ããã£ã®é¢çœããšããã§ã。æåã¯æžæããããããŸããã、ãããçŸä»£ã®æè¡ã³ãã¥ãã±ãŒã·ã§ã³ã®äžåŽé¢ã§ãã。å°éå®¶ã、æã«ã¯ããããèšèã®è£ã«ããæ¬è³ªçãªçåãé¢å¿ãèŠæãæŽå¯åãå¿ èŠãªã®ãããããŸãã。
è£è¶³5:äºæž¬ããããããã®åå¿(ãªãJæ°)ã®ã³ã¡ã³ããçæã、ãã®ã³ã¡ã³ãã«å¯ŸããŠãã¡ããã。
ãªãJæ°ç¹æã®ç œããèªè、éçãã¿ãªã©ã亀ããåå¿ãæ³å®ã、ããã«ãã¡ããã圢ã§è¿ããŸã。
äºæž¬ãããã³ã¡ã³ãäŸ:
AIã蚌æ?ð€ ãŸãã俺ãã¡ã®ä»äºã奪ããããã…ãªãJæ°ã«ãã¡ãããåè«:
俺ã¯éçã®ã«ãŒã«ãçè§£ã§ããã®ã«、AIã¯æ°åŠãã。æ Œå·®ã²ã©ãããã。
PutnamBenchãšããããã¹ãã§49å658æãšãïœïœïœ AIééããå ïœïœïœ ãããSoTAã?(å²ç¬)
ãŠãLean 4ãšãããã®åããŠèããã。ãã€ããŒãããã。
ãµããŽãŒã«åè§£?ð€ð€ð€ 飯é£ãã®ããµããŽãŒã«åè§£ããŠãã®ã、æèãããŒãªAIã¯。
ã、ãåãã€ãã«æ°åŠã«ãŸã§è峿ã£ããã?åããª!ãŸã、AIã«ä»äºå¥ªãããå¿é ããåã«、ãŸã仿¥ã®æç·çµãã§ã¿ãã。ãããäžçªã®èšŒæã ããã!ðª
PutnamBenchã§49å658æ?ð€ ãããã、ãåãã®èŽå±çå£ã®åæãšäŒŒããããªããããª!ððð ãããSoTAãªãã…(é ãç®) ã§ããª、ããã§ããããããšãªããã§!ãåãã«ã¯äžçè§£ããåé¡ã°ã£ãã!ïœïœïœ
Lean 4?ãã€ããŒ?ãããéçããèŠãŠãªããåãã«ã¯ãã€ããŒãããª!ð æ°åŠã®äžçã§ã¯çµæ§ã¢ããèšèªãã。ãåãã®å¥œããªéžæã®èçªå·ããéèŠã!ç¥ãããã©!
ãµããŽãŒã«åè§£?飯é£ãã®ã«?ããã§、ãŸãã³ã³ããè¡ã、次ã«ã¬ãžã«äžŠã¶、éæã、è¢ããã…ã£ãŠãª! AIãå¿ æ»ãªãã、ãåãã¿ããã«ãŒãŒã£ãšã¹ããèŠãŠãã ãã¡ããã!ð€ð€ð€ ãŸã、仿¥ã®å€é£¯èããã®ããµããŽãŒã«åè§£ããããããã©ãª!ã«ã¬ãŒäœããªã、ãŸãã«ãŒåºã㊅ã£ãš!
ã³ã©ã :ã€ã³ã¿ãŒããããšç œã
ç¹å®ã®ã€ã³ã¿ãŒãããã³ãã¥ããã£ã§ã¯、çžæãè¶åããã、èªèããããããããªç¬ç¹ã®ã³ãã¥ãã±ãŒã·ã§ã³ã¹ã¿ã€ã«ãèŠãããŸã。æè¡çãªå 容ã§ãã£ãŠã、ãã®ãããªãã£ã«ã¿ãŒãéããŠèªãããããšããããŸã。çé¢ç®ãªè°è«ã ããå šãŠã§ã¯ãªã、ãŠãŒã¢ã¢ãç œãããŸã、ã³ãã¥ããã£ã掻æ§åãããèŠçŽ ã®äžã€ãªã®ãããããŸãã。ãã¡ãã、床ãè¶ãã誹è¬äžå·ã¯è«å€ã§ãã。
è£è¶³6:äºæž¬ããããããã®åå¿(ã¬ã«ã¡ãã)ã®ã³ã¡ã³ããçæã、ãã®ã³ã¡ã³ãã«å¯ŸããŠåè«ãã。
女æ§åãå¿åæ²ç€ºæ¿ã¬ã«ã¡ããã§ã¯、å ±æãçæŽ»ã«å¯çããèŠç¹ããã®ã³ã¡ã³ããå€ãèŠãããåŸåããããŸã。
äºæž¬ãããã³ã¡ã³ãäŸ:
ããŒ、AIãæ°åŠã®èšŒæ?é£ããããŠå šç¶ããããªããðŠ æç³»ã«ã¯ç¡çã ãŒ。åè«:
ã§ã、ãããç§ãã¡ã®ç掻ã«ã©ã圹ç«ã€ã®?ãã£ãšåãããããæããŠã»ãããª。
AIã£ãŠãªãã§ãã§ããããã«ãªãã®ããª。ã¡ãã£ãšæããã…ð€
ãµããŽãŒã«åè§£ã£ãŠ、æçã®æé ãšã、çä»ãã®æé ã现ããããã®ã«äŒŒãŠã?ãããªãã¡ãã£ãšåãããã。
蚌æãšããã、AIã«ã¯ãã£ãšç§ãã¡ã®æ°æã¡ã«å¯ãæ·»ã£ãŠã»ãããªð
ã³ã¡ã³ãããããšãããããŸã!æ°åŠãAIã®å°éçãªè©±ã¯、銎æã¿ããªããšé£ããæããŸããã、åãããŸãð¥º。ã§ã、ãã®æè¡ãçŽæ¥çããã®ç掻ã«é¢ããããšãå®ã¯ãããã§ãã。
äŸãã°、çãããæ¯æ¥äœ¿ã£ãŠããã¹ããã¢ããªãã€ã³ã¿ãŒããããµãŒãã¹、é»è»ã®éè¡ã·ã¹ãã ãªã©、ããããã®ã³ã³ãã¥ãŒã¿ããã°ã©ã ã§åããŠããŸã。ãããã®ããã°ã©ã ã«ééã(ãã°)ããã£ããå°ããŸããã? AIã«ãã蚌ææè¡ãé²ããš、ããããããã°ã©ã ã「çµ¶å¯Ÿã«æ£ãã」ãšããããšãæ°åŠçã«èšŒæã§ããããã«ãªããŸã。ããããã°、ãã£ãšå®å¿ããŠæè¡ã䜿ããããã«ãªããã§ã。ã»ãã¥ãªãã£ã®é«ããããã·ã§ããã³ã°ã、äºæ ã®å¿é ãå°ãªãèªåé転è»ãªã©、ç§ãã¡ã®ç掻ã®「å®å š」ã「å®å¿」ã«ç¹ãããŸã。
ãµããŽãŒã«åè§£ã¯、ãŸãã«ãã£ãããéã、æçã®æé ãçä»ãã®æé ã现ããããã®ã«äŒŒãŠããŸã!è€éãªããšã、å°ããªã¹ãããã«åããã°åãçµã¿ããããªããŸããã。AIãåãæ¹æ³ã§、é£ããåé¡ãè§£ãããšããŠãããã§ã。æ¥åžžç掻ã«äŸãããšåãããããã§ãããð
AIãäœã§ãã§ããããã«ãªãã®ã¯、確ãã«å°ãæãåŽé¢ããããããããŸãã。ã§ã、ä»ã¯ãŸã ç¹å®ã®åéã§åŸæãªAIãå€ãã§ã。ãããŠ、AIã¯ç§ãã¡ã®ç掻ã䟿å©ã«ããã、å®å šã«ããã、å°ã£ãŠããããšã解決ãããããããã®ããŒã«ãšããŠéçºãé²ãã§ããŸã。ç§ãã¡ã®æ°æã¡ã«å¯ãæ·»ãAIã、ææ èªèã察話æè¡ã®é²æ©ã§、å°ããã€å®çŸã«è¿ã¥ããŠãããã§ããðž
ãã®èšäºã、å°ãã§ãçãããAIã«èŠªãã¿ãæã€ãã£ããã«ãªãã°å¬ããã§ãð
ã³ã©ã :AIãšå ±æ
AIãè«çãèšç®ã ãã§ãªã、人éã®ææ ãæèŠã«ã©ããŸã§å¯ãæ·»ããããã«ãªããã¯、ä»åŸã®å€§ããªããŒãã§ã。æ°åŠã®èšŒæã®ãããªå³å¯ãªåéãšã¯å¯Ÿæ¥µã«ããããã«èŠããŸãã、AIã人éã®æèãåµé æ§ãæ¬åœã«ãµããŒãããããã«ã¯、è«çã ãã§ãªãå ±ææ§ãçŽæã®ãããªåŽé¢ãå¿ èŠã«ãªãã®ãããããŸãã。
è£è¶³7:äºæž¬ããããããã®åå¿(ã€ãã³ã¡ãã³ã¡ã³ããã©ã¹)ã®ã³ã¡ã³ããçæã、ãã®ã³ã¡ã³ãã«å¯ŸããŠåè«ãã。
ã€ãã³ã¡ããã¥ãŒã¹ãµã€ãã®ã³ã¡ã³ããã©ã¹ã§ã¯、ãã¥ãŒã¹ã«å¯Ÿããäžè¬çãªæèŠã、瀟äŒåé¡ãšçµã³ã€ããã³ã¡ã³ããå€ãèŠãããŸã。å¿åã§ãã、æ¯èŒçäžå¯§ãªãã®ããææ çãªãã®ãŸã§æ§ã ã§ã。
äºæž¬ãããã³ã¡ã³ãäŸ:
AIãæ°åŠã®èšŒæ…ãããã人éã®ä»äºããªããªãæä»£ãæ¥ãã®ã。åè«:
äžåœã®æè¡ã¯ããããª。æ¥æ¬ã¯å®å šã«é ããŠãããããªãã?ãã®ãŸãŸã ãšæè¡ç«åœãããã³ã¯çµããã 。
æ°åŠãªããŠåŸæãªäººãããã°ãã。AIã«ä»»ããŠ、人éã¯ãã£ãšåµé çãªããšããã¹ãã 。
ã§ãAIãééã£ã蚌æãããã©ããªãã®?責任ã¯èª°ãåããã ?
åŠè ã®èªå·±æºè¶³ãããªãã®?ãã£ãšåœ¹ã«ç«ã€AIéçºã«ãéã䜿ãã¹ãã ã。
ã³ã¡ã³ãããããšãããããŸã。æ§ã ãªãæèŠãããããšæããŸã。
ãŸã「人éã®ä»äºããªããªã」ãšããæžå¿µã«ã€ããŠã§ãã、AIã¯äººéã®æ°åŠè ã®ä»äºãå®å šã«ä»£æ¿ããã®ã§ã¯ãªã、匷åãªããŒã«ãšããŠè£å®ããå¯èœæ§ãé«ããšèããããŸã。é£ãã蚌æã®ç¢ºèªã、èšå€§ãªèšç®ãAIã«ä»»ããããšã§、æ°åŠè ã¯ããåµé çãªæ°ããã¢ã€ãã¢ã®æ¢æ±ã«éäžã§ããããã«ãªããŸã。ããã¯「ä»äºããªããªã」ã®ã§ã¯ãªã、「ä»äºã®ããæ¹ãå€ãã」ãšããããšã ãšæããããšãã§ããŸã。
äžåœã®æè¡åã¯ç¢ºãã«ç®èŠãŸãããã®ããããŸãã、æ¥æ¬ã§ãAIç ç©¶ã¯é²ãã§ããŸã。åŸæãªåéãã¢ãããŒãã¯ç°ãªããŸã。ãã®åéã§ã、æ¥æ¬ã®æ°åŠè ãæ å ±ç§åŠè ãæã€æ·±ãå°éç¥èãšAIæè¡ãçµã¿åãããããšã§、äžçã«è²¢ç®ã§ããå¯èœæ§ããããŸã。æ²èгçã«ãªãã ãã§ãªã、ã©ãããã°æ¥æ¬ã®åŒ·ã¿ã掻ãããã建èšçã«èããããšãéèŠã§ã。
AIã«æ°åŠãä»»ããŠäººéãåµé çãªããšã、ãšããæèŠãçè§£ã§ããŸã。ããã、æ°åŠã¯ç§åŠæè¡ã®åºç€ã§ãã、ãã®çºå±ãªãããŠã¯å€ãã®åµé çãªæŽ»åãéçããããŸã。AIã«ããèšŒææ¯æŽã¯、ãã®åºç€ããã匷åºã«ã、æ°ããªçºèŠãå éãããããšã«ç¹ãããŸã。ãŸã、AIããªã蚌æã§ããã®ããåæããããšã§、人éãæ°ããªæ°åŠçæŽå¯ãåŸãããšãæåŸ ã§ããŸã。
AIã誀ã£ã蚌æãçæããå¯èœæ§ã¯ãŒãã§ã¯ãããŸãã。ããã、DeepSeek-Prover-V2ã®ãããªã¢ãã«ãçæãã蚌æã¯、æçµçã«Lean 4ã®ãããªèšŒææ¯æŽç³»ã«ãã£ãŠå³å¯ã«æ€èšŒãããŸã。æ€èšŒãéããªããã°、ããã¯èšŒæãšããŠèªããããŸãã。è²¬ä»»ã®æåšã«ã€ããŠã¯、AIãéçº・éçšããåŽã、çæç©ã®å質ä¿èšŒãæ€èšŒããã»ã¹ãé©åã«ç®¡çããå¿ èŠãåºãŠããã§ããã。
ãã®ç ç©¶ã「åŠè ã®èªå·±æºè¶³」ãã©ããã«ã€ããŠã§ãã、圢åŒçå®ç蚌æã¯æ°åŠãã³ã³ãã¥ãŒã¿ç§åŠã®åºç€çè«ã«é¢ããã ãã§ãªã、äžã§è¿°ã¹ãããã«、ãœãããŠã§ã¢ãããŒããŠã§ã¢ã®ä¿¡é Œæ§åäž、ã»ãã¥ãªãã£ä¿èšŒãšãã£ã圢ã§、ç§ãã¡ã®ç€ŸäŒã®å®å š・å®å¿ã«çŽçµããå¿çšãæåŸ ãããåéã§ã。åºç€ç ç©¶ã®ææã、å°æ¥çãªç€ŸäŒå šäœã®å©çã«ç¹ããããšã¯å°ãªããããŸãã。é·æçãªèŠç¹ã§èŠãã°、瀟äŒã«「圹ã«ç«ã€」å¯èœæ§ã¯ååã«ããç ç©¶ã ãšèããããŸã。
ã³ã©ã :ãã¥ãŒã¹ãµã€ãã®ã³ã¡ã³ãæ¬
ã€ãã³ã¡ãªã©ã«å¯ããããã³ã¡ã³ãã¯、ãã®ãã¥ãŒã¹ã«å¯Ÿããäžéã®é¢å¿ãæžå¿µãå£éèŠããŸã。å°éå®¶ã«ãšã£ãŠã¯åœããåã®ããšã§ã、äžè¬ã®äººã ã«ãšã£ãŠã¯çåã ã£ãã、äžå®ã ã£ããããããšããããŸã。ããããã³ã¡ã³ãã«çæ¯ã«åãåã、åãããããäžå¯§ã«èª¬æããããšã¯、ç§åŠæè¡ãšç€ŸäŒã®éã®ä¿¡é Œé¢ä¿ãç¯ãäžã§éåžžã«å€§åã ãšæããŸã。
è£è¶³9:äºæž¬ããããããã®åå¿(TiktokãŠãŒã¶ãŒããã€ãã§ã)ã®ã³ã¡ã³ããçæã、ãã®ã³ã¡ã³ãã«å¯ŸããŠåè«ãã
TiktokãŠãŒã¶ãŒã¯çãèŠèŠçãªã³ã³ãã³ãã«æ £ããŠãã、ãã¬ã³ããå ±æãéèŠããåŸåããããŸã。ãã€ãã§ã(Twitteräžã®ãã§ããã¹ããšããããŠãŒã¶ãŒ)ã¯、ãžã§ã³ããŒå¹³çãç€ŸäŒæ§é ã«å¯Ÿããæ¹å€çãªèŠç¹ããã³ã¡ã³ãããããšããããŸã。
äºæž¬ãããã³ã¡ã³ãäŸ(TiktokãŠãŒã¶ãŒé¢š):
AIãã!ã§ãããTikTokã§ããºã?ç¡çããã?ðåè«:
æ°åŠãšãç¡çãŽãã𥺠誰ã30ç§ã§è§£èª¬ããŠããã¡ã³ã¹✋
AIã®èšŒæã£ãŠäœ?çŸå³ããããªã?ð #AI #æ°åŠ #ç¥ãããã©
ãã®AI䜿ã£ãŠã€ã±ã¡ã³ãšã坿ãåäœããã®?ãã£ã¡ã®ãéèŠããã?
TikTokã§ããºããã©ãã…ããŒã、æ°åŠã®èšŒæã®è§£èª¬åç»ã¯é£ããããã§ãã!ððð ã§ã、AIãæ°åŒãè§£ãã¯ãŒã«ãªæ åãšã、é£ããåé¡ããµã¯ãµã¯è§£ãAIã®ã¹ããŒãæãèŠããåç»ãªã、ãããããã…?ð€
30ç§è§£èª¬、ãã£ã¬ã³ãžããŠã¿ãŸã!ð AIãã、é£ããæ°åŠã®åé¡ã、å°ããåé¡ã«åããŠé çªã«è§£ããŠ、ãããå šéšæ£ããã£ãŠã³ã³ãã¥ãŒã¿ã§ç¢ºèªã§ããããã«ãããã§ã!ããã「å®ç蚌æ」。AIãèªåã§èããåãã€ããŠ、ãã£ãšããã蚌æãã§ããããã«ãªã£ãã!ã£ãŠè©±ã§ã!ã©ãã§ããã?(æ±)
AIã®èšŒæã¯、æ®å¿µãªããçŸå³ãããªãã§ãã…!ð èŠãç®ã¯ãã ã®æåã®çŸ åã ã£ããããŸã。ã§ã、ãã®æåã®çŸ åã®äžã«、å®å®ã®ççã«è¿«ããããªè«çãè©°ãŸã£ãŠãããã§ã!ããæå³、ç¥çãªæ 逿ºç¹…ãã?ð
AIã§ã€ã±ã¡ã³ã坿ãå…!確ãã«、AIã¯çµµãåç»ãäœãã®ãåŸæã«ãªã£ãŠããŸããã!ã§ã、DeepSeek-Prover-V2ã¯æ°åŠã«ç¹åããAIãªã®ã§、é¡ãäœãã®ã¯èŠæã§ãðŠ ã§ã、AIãæ§ã ãªåéã§é²åããããšã§、çããã®「奜ã」ã圢ã«ããæè¡ããã£ãšé¢çœããªãã¯ãã§ãã!AIã®åã§、æšãã®æé«ã®ããžã¥ã¢ã«ãäœãåºãæªæ¥ãæ¥ããã?✨
äºæž¬ãããã³ã¡ã³ãäŸ(ãã€ãã§ã颚):
ãŸãããããæè¡ç³»ã®ç ç©¶ã£ãŠ、ç·ã®äººã°ããã§é²ããããŠããã§ãã?女æ§ç ç©¶è ã¯ã¡ãããšè©äŸ¡ãããŠãã®?åè«:
AIãæ°åŠèšŒæ…çµå±、ç«¶äºãšãå¹çã°ã£ãã远æ±ããŠ、人éãããæèãšãææ§ã¯ç¡èŠãããã§ãã。
AIã®ååãããã€ãã、ãªããç·æ§çãªæè¡ã£ãŠæã。ãã£ãšãžã§ã³ããŒãã¥ãŒãã©ã«ãªèŠç¹ãå¿ èŠãããªã?
ããããé«åºŠãªæè¡éçºã«ã°ãããé䜿ãããããªããŠ、ãã£ãšç€ŸäŒã®æ Œå·®ãšã、女æ§ã®æš©å©åäžã®ããã«ãéã䜿ãã¹ãã§ã¯?
ãæèŠããããšãããããŸã。確ãã«、æ°åŠãã³ã³ãã¥ãŒã¿ç§åŠã®åéã¯æŽå²çã«ç·æ§ãå€ããå ããŠããŸããã、è¿å¹Žã§ã¯å¥³æ§ç ç©¶è ãæè¡è ãå¢ããŠãã、掻èºã®å Žã¯åºãã£ãŠããŸã。AIç ç©¶ã«ãããŠã、倿§ãªããã¯ã°ã©ãŠã³ããæã€äººã ãé¢ããããšã§、ããå ¬å¹³ã§å«ççãªAIéçºãå¯èœã«ãªããšèããããŠããŸã。DeepSeek-AIã®ããŒã æ§æã«ã€ããŠã¯åãäžããŸããã、ç ç©¶ã³ãã¥ããã£å šäœãšããŠ、ãžã§ã³ããŒãã©ã³ã¹ãå«ãã倿§æ§ã®æšé²ã¯éèŠãªèª²é¡ãšããŠèªèãããŠããŸã。
AIãç«¶äºãå¹çã远æ±ããåŽé¢ãããããšã¯åŠå®ã§ããŸãã。ããã、DeepSeek-Prover-V2ã®ãããªç ç©¶ã¯、AIãåãªãèšç®æ©ã§ã¯ãªã、ããé«åºŠãªæšè«ãåé¡è§£æ±ºãã§ããããã«ãªãããšãç®æããŠããŸã。ããã¯、人éãæã€è«ççæèèœåãAIãã©ã®çšåºŠç²åŸã§ããã、ãšããç¥çãªæ¢æ±ã§ããããŸã。AIã蚌æãçæããéçšã§、人éãèŠèœãšããŠããè«çæ§é ãçºèŠããã、æ°ããèŠç¹ãæäŸãããããããšã§、人éã®æèãåºæ¿ã、åµé æ§ãé«ããå¯èœæ§ããããŸã。
AIã®ååãæè¡ã®ã€ã¡ãŒãžãç·æ§çã«æãããããšãããææã¯、åœåãåºå ±ã«ãããŠèæ ®ãã¹ãç¹ãããããŸãã。æè¡ãã®ãã®ã«ãžã§ã³ããŒã¯ãããŸããã、ãããéçºã、çºä¿¡ãã人éåŽã®æèã圱é¿ããå¯èœæ§ã¯ãããŸã。ä»åŸ、AIæè¡ãããã«ç€ŸäŒã«æ®åããã«ã€ããŠ、ããå€ãã®äººã ã«ãšã£ãŠèŠªãã¿ããã、倿§ãªã€ã¡ãŒãžãæã€AIãç»å ŽããããšãæãŸããã§ããã。
æè¡éçºãžã®æè³ãšç€ŸäŒèª²é¡ãžã®åãçµã¿ã¯、ã©ã¡ããäžæ¹ã ããåªå ããã®ã§ã¯ãªã、äž¡æ¹ãéèŠã ãšèããããŸã。åºç€ç ç©¶ãå 端æè¡éçºã¯、é·æçã«èŠãŠç€ŸäŒå šäœã®çç£æ§ãé«ããã、æ°ããªç£æ¥ãçã¿åºãããããããšã§、çµæçã«ç€ŸäŒå šäœãè±ãã«ã、æ Œå·®æ¯æ£ã®ããã®ãªãœãŒã¹ãçã¿åºãå¯èœæ§ããããŸã。AIæè¡ã、ãžã§ã³ããŒæ Œå·®ã瀟äŒçãªäžå¹³çã®è§£æ¶ã«åœ¹ç«ã€ãããªå¿çš(äŸãã°、ãã€ã¢ã¹ã®ãããã«ããæ¡çšã·ã¹ãã ã®éçºã、æè²æ©äŒã®åçåãªã©)ãç©æ¥µçã«é²ããããã¹ãã ãšèããŸã。
ã³ã©ã :倿§ãªèŠç¹ãåãå ¥ãã
æè¡ã®é²åã¯、æ§ã ãªç«å Žã®äººã ã«ç°ãªã圱é¿ãäžããŸã。æè¡è ã ãã§ãªã、瀟äŒåŠè 、å«çåŠè 、ãããŠäžè¬ã®äººã ãããããã®èŠç¹ããæèŠãåºãåãããšã¯、ããè¯ãæè¡éçºãš、ããã瀟äŒã«èª¿åçã«åãå ¥ããããããã«äžå¯æ¬ ã§ã。æ¹å€çãªæèŠãæžå¿µã®å£°ã«ãè³ãåŸã、察話ãç¶ããå§¿å¢ãæ±ããããŸã。
è£è¶³10:ãã®èšäºãããæ·±ãçè§£ããããã®æšèŠå³æžã玹ä»
DeepSeek-Prover-V2ã®æè¡ãèæ¯ã«ããåéã«ã€ããŠ、ããã«åŠã³ããæ¹ãžã®æšèŠå³æžã玹ä»ããŸã(Amazonãªã³ã¯ã¯å«ã¿ãŸãã)。Googleæ€çŽ¢ããŒãžãžã®ãªã³ã¯ãNo-followã§èšèŒããŸã。
圢åŒçå®ç蚌æ・èšŒææ¯æŽç³»ã«ã€ããŠ:
- 「ã³ã³ãã¥ãŒã¿ã«ããæ°åŠå®çã®èšŒæ」
圢åŒçå®ç蚌æã®åºæ¬çãªèãæ¹ãæŽå²、äž»èŠãªèšŒææ¯æŽç³»ã«ã€ããŠæŠèª¬ããŠããæžç±ãè¯ãã§ããã。Googleæ€çŽ¢ã§é¢é£æžç±ãæ¢ã - 「Logic and Proofs」 (Leanã®å
¬åŒãã¥ãŒããªã¢ã«ãªã©)
ç¹å®ã®èšŒææ¯æŽç³»(Lean, Coqãªã©)ã®å ¥éæžããã¥ãŒããªã¢ã«ã¯、å®éã«åœ¢åŒçãªèšŒæãèšè¿°ããæèŠãæŽãã®ã«åœ¹ç«ã¡ãŸã。Leanã«ã€ããŠã¯、å ¬åŒããã¥ã¡ã³ããã³ãã¥ããã£ãæäŸããè³æãå å®ããŠããŸã。Googleæ€çŽ¢ã§Leanå ¥éè³æãæ¢ã
å€§èŠæš¡èšèªã¢ãã«・匷ååŠç¿ã«ã€ããŠ:
- 「èªç¶èšèªåŠçã®åºç€」 (岡åŽçŽèг èãªã©)
LLMã®åºç€ãšãªãèªç¶èšèªåŠçæè¡ã«ã€ããŠ、äœç³»çã«åŠã¹ãæžç±。ãã©ã³ã¹ãã©ãŒããŒã¢ãã«ãªã©ã®ææ°æè¡ã解説ãããŠãããã®ãæãŸããã§ã。Googleæ€çŽ¢ã§é¢é£æžç±ãæ¢ã - 「匷ååŠç¿」 (Sutton & Barto èãªã©)
匷ååŠç¿ã®å€å žçãªæç§æž。DeepSeek-Prover-V2ã§çšããããŠãã匷ååŠç¿ã®çè«çèæ¯ãçè§£ããã®ã«åœ¹ç«ã¡ãŸã。Googleæ€çŽ¢ã§Sutton & Bartoã®åŒ·ååŠç¿æ¬ãæ¢ã - 「ãŒãããäœãDeep Learning」ã·ãªãŒãº
ãã£ãŒãã©ãŒãã³ã°ã®åºæ¬çãªä»çµã¿ãçè§£ããããã®å®è·µçãªæžç±。DeepSeek-Prover-V2ã®ãããªå€§èŠæš¡ã¢ãã«ã®åºç€æè¡ãžã®çè§£ãæ·±ãŸããŸã。Googleæ€çŽ¢ã§ãŒãããäœãDeep Learningã·ãªãŒãºãæ¢ã
AIãšæ°åŠã®äº€ããã«ã€ããŠ:
- 「AIãšæ°åŠ」
AIãæ°åŠç ç©¶ã«ã©ã®ããã«æŽ»çšãããŠããã、ãããã¯AIãæ°åŠã«ã©ã®ãããªåããæããããŠããã、ãšãã£ãããŒããæ±ã£ãæžç±。æå 端ã®ç ç©¶ååã«è§Šããããšãã§ããŸã。Googleæ€çŽ¢ã§é¢é£æžç±ãæ¢ã
ãããã®æžç±ã¯、DeepSeek-Prover-V2ã®æè¡çãªè©³çްã、ãããäœçœ®ããç ç©¶åéã®å šäœåãçè§£ããäžã§å©ãã«ãªãã§ããã。峿žé€šããªã³ã©ã€ã³æžåºãªã©ã§æ¢ããŠã¿ãŠãã ãã。
è£è¶³11:ãã®èšäºã®å 容ãããŒãã«äžæ¹ã®æŒ«æãæžã(é¢è¥¿åŒã§)
(èå°äžå€®ã«、ããã©ã³æŒ«æåž«é¢šã®「ããã³ã」ãš、ã¡ãã£ãšãšãŒããæãã®「ãã±」ãç»å Ž)
ããã³ã: ã©ãã〜、〇〇ã§ã!
ãã±: △△ã§ãŒã!ãé¡ãããŸãŒã!
ããã³ã: ãã、ã©ãªãããã△△、ãªããé£ããé¡ããŠ。èšç®ã§ãããŠãã®ã?
ãã±: ããã、èšç®ã©ãããããŸãžãã。æè¿ã®AIã®è©±、èããŸãã?「DeepSeek-Prover-V2」ãããã、æ°åŠã®èšŒæãèªåã§ãã£ãŠãããããããã§ãã!
ããã³ã: ãã£ãŒãã·ãŒã¯ããã㌅ãªããé·ãååããª!ãããæ°åŠã®èšŒæ?ãã³ããããª!俺ãåŠçã®é 、蚌æåé¡ãªããŠãã³ãã³ã«ã³ãã³ãã£ãã§。
ãã±: ããã?ãããAIãåæã«èšŒæããŠããããã§ãã!ãªãã§ã「ãµããŽãŒã«åè§£」ãšãèšããŠ、é£ããåé¡ãå°ããªç®æšã«åããŠ、é çªã«è§£ããŠããããããã§ãã。
ããã³ã: ãµããŽãŒã«åè§£?ã»ãŒ、ãªããèããããšãããª。ãã、äŸãã°ã¢ã¬ãã?挫æã®ãã¿äœãæã、ãŸããã«ãèããŠ、æ¬¡ã«æ¬é¡å ¥ã£ãŠ、ãªãã§ããŒã³!ã£ãŠ。ããããµããŽãŒã«åè§£ã¡ãããã?
ãã±: ãã!ãããã!åž«å 、挫æåž«ã¯AIããå ã«ãµããŽãŒã«åè§£ããšã£ããã§ãã!ããããã!
ããã³ã: ãããã、äžç·ã«ãããª!俺ãã®åè§£ã¯ãã£ãšãã£ãŒãªã³ã°ã!AIã¯ãã£ãšã«ãã«ãããã!「Lean 4」ãšããã、ã³ã³ãã¥ãŒã¿ãåããèšèã§èšŒææžããããã。ãå、Lean 4ã§æŒ«æã®å°æ¬æžããŠã¿ã!「ãã±:『ãããããª』、Lean 4ã§èšŒæ『ãã®ãã±ã¯å€å žçã§ãã。蚌æçµãã。』」…éãããããã!
ãã±: ð 確ãã«! Lean 4ã§æžããæŒ«æ、誰ãç¬ãããžãã!ã§ã、AIã蚌æããŠããããš、æ°åŠè ãæ¥œã«ãªããããã§ãã。
ããã³ã: æ°åŠè ãæ¥œã«ãªããã¯ãããã£ã¡ã。ã§ã、AIã蚌æããããã、人éã®æ¹ããã»ã«ãªãããšã¡ããã?èªåã§èããã§ããããã、è³ã¿ãçèçã«ãªããžãããã«ãªãã§。
ãã±: ã、ãã£ã!俺ã、ãã以äžãã»ã«ãªã£ããã©ãªããã…!挫æã§ãã²ãããã«ãªããã!
ããã³ã: å¿é ããª!AIã«ã¯ä¿ºãã®ã¢ããããã¯çè§£ã§ãã!ãªãã§ããã§ã³ã±ããã、ãªãã§ãã®ãã±ã§ç¬ããèµ·ãããã、AIã«ã¯èšŒæã§ãããã!
ãã±: ãããª!俺ãã®æŒ«æã¯AIã«ã¯ç䌌ã§ãã²ã!人éã®「ãªãã§ããã!」ã¯、AIã«ã¯èšŒæäžå¯èœãªãã!
ããã³ã: ããã!ã ããèªä¿¡æã£ãŠæŒ«æç¶ãã!ãã、次ã®ãµããŽãŒã«ã¯、ãã®ãã¿ã§å®¢åžããã«ãŒã³ã!
ãã±: ããŒ!蚌æãããã§!
ããã³ã: (ãã±ã®é ã軜ãå©ããªãã)ããŒã®!
äºäºº: ããããšãããããŸãã〜!
è£è¶³12:ãã®èšäºã®å 容ãããŒãã«äžäººããªããã³ããæžã(é¢è¥¿åŒã§)
(äžäººã§èå°ã«ç«ã¡、åãå§ãã)
ã¯ãã©ãŒããŒ!ããŒ、çãããåç¥、ãããã〇〇ã§ã!(ãããããã…èªåã§ææ)
ããã、æè¿ã®AIã£ãŠã»ããŸã«ãããã§ãã!äœã§ãã§ãããããªã£ãŠã㊅。
èããŸãã?「DeepSeek-Prover-V2」ãŠããAIã、æ°åŠã®èšŒæãèªåã§ãã£ãŠãããããããã§ãã!
(客åžã«åãã£ãŠ)蚌æã§ãã?蚌æ!
(èªåã«)ã、ãå、蚌æãšãåããããã?
(èªåã«åè«)ãããã、ãããAIããã£ãŠããããããŠ!ä»»ããããããã!
(èªåã«)ä»»ããŠã°ã£ããã§ãåã®è³ã¿ãè
ããžãã?
(èªåã«åè«)ã㣅!確ãã«!åŠçã®é 、æ°åŠã®èšŒæã§æ©ãã§æ©ãã§…ãã®çèãè³ã¿ããéããŠãããã®ããããããªã…。AIã«ä»»ããã、俺、ãã«ãã«ã«ãªã£ãè³ã¿ãã«ãªã£ãŠãŸãããããã!
ãªãã§ã「ãµããŽãŒã«åè§£」ãŠãããŠ、é£ããåé¡ãå°ããªåé¡ã«åããŠè§£ãããããã§ãã。
(èªåã«)ãµããŽãŒã«åè§£…?ãã、ãåã仿¥ã®æ©é£¯èãããšãããã£ãŠããã。å·èµåº«èŠãŠ「äœäœãã㪅」、ãããã¡ã€ã³ãŽãŒã«。次ã«「é¶èãã㪅åæãã«ããã」、ããããµããŽãŒã«1。ããã«「æãæ²¹ãããª」「çæ ç²…」ã£ãŠçްããã¹ãããã«åããŠãã£ãŠããã!
(èªåã«åè«)ãã!ã»ããŸã!俺、ç¥ããéã«AIãšåãããšããšã£ããã!AIãšä¿º、è³ã¿ãã¬ãã«äžç·ã!?
(èªåã«)ãã、äžç·ã¡ããã!ãåã®æ©é£¯ã®ãµããŽãŒã«åè§£、ããã£ã¡ã
ã倱æããŠé©åœãªããã§æžãŸããŠããããã!AIã¯PutnamBenchããé£ãããã¹ãã§49åãããŠãããã!ãåã¯æ©é£¯ã®ãµããŽãŒã«ã«äœå倱æãããæ°ããŠã¿ã!
ããã、ã§ãAIã蚌æããŠãããã£ãŠ、æ°åŠè
ã®æ¹ã
ã«ãšã£ãŠã¯ç»æçãªãã¡ãããŸã?
(èªåã«)ããããª。é£ããèšç®ãšã確èªãšã、AIã«ä»»ããã、ãã£ãšæ°ããçºèŠã«éäžã§ãããããª。
(èªåã«åè«)ã§ããª、AIãäœã蚌æ、人éã«ã¯çè§£ã§ãã²ãã»ã©è€éãã£ããã©ããããã?「ãã®èšŒæã¯æ£ããã§ã(ãã ã、çè§£äžèœ)」ã£ãŠèšãããŠã、ãªããã¹ãããªãããžããªã!æ°åŠã®é¢çœãã£ãŠ、åãã£ãæã®ãã®「ãã!」ãŠããã²ããããã?AIã«å
šéšããããã、ãã®åã³ãªããªããã!
çµå±、AIã¯ããããã©、人éã®ç¥æ§ãšãææ§ãšã、ããããéšåã¯ãã£ã±ã倧äºã«ããªããããããª!
(èªåã«)ãããª!AIã«ã¯ã§ãã²ã、ã¢ããªããšèããŠç¬ãåãã®ã、俺ã®ãµããŽãŒã«ã!
(èªåã«åè«)誰ãã¢ãããã!…ãŸã、ããããª!ç¬ããåãã£ãŠããã¡ã€ã³ãŽãŒã«ã«åãã£ãŠ、è²ããªãã±ãããã³ãã®ãµããŽãŒã«ãçµã¿ç«ãŠãŠãããã!ããã俺ã®「ãç¬ã蚌æ」ã!宿ããæã«ã¯å®¢åžããçç¬ãšããå ±é
¬ãããã ãããã!
(æºè¶³ãã«)ãã、仿¥ãé 匵ã!ããããšãããããŸãã!(èªåã§ææ)
è£è¶³13:ãã®èšäºã®å 容ãããŒãã«å€§åå©ãæžã。
DeepSeek-Prover-V2ãšæ°åŠèšŒæãããŒãã«ãã倧åå©ã®ãé¡ãšåçãçæããŸã。
ãé¡: AI「DeepSeek-Prover-V2」ã蚌æããã®ã¯、æ°åŠã®å®ç以å€ã«äœ?
åçäŸ:
- ç«ãæ¶²äœã§ããããš。
- 仿¥ã®æ©åŸ¡é£¯ãã«ã¬ãŒã«ãªã確ç。
- äžåžã®ãžã§ãŒã¯ã¯ãªãé¢çœããªãã®ã、ãã®è«çççç±。
- 「ç©ããããã©é£ã¹ãã」ãšããæ¬²æ±ãççŸããªãæ¡ä»¶。
- ç¡éã«ãããããèšäºã®äžãã、ãã£ãäžã€é¢çœãèšäºã«ãã©ãçãã蚌æå¯èœæ§。
- ãªãèªåã¯ãã€ãç· åã®ãªã®ãªã«ãªããªããšæ¬æ°ãåºããªãã®ã、ãã®ååšèšŒæ。
- å°çäžã§æãçŸå³ãããç±³ã®åçš®。
- é£ã®èçãéãèŠããã®ã¯ç®ã®é¯èŠã§ãã蚌æ。
- æããããšæéãæ©ãéããçç±。
- æšãã®å°ãã¯ç¡é倧ã§ããããš。
è£è¶³14:ãã®èšäºã®å 容ãããŒãã«SFã·ã§ãŒãã·ã§ãŒãã®å°èª¬ãæžã。
ã¿ã€ãã«:蚌æå®å®(ãããŽã¡ãŒ・ã³ã¹ã¢ã¹)
西æŠ2242幎。人é¡ã¯、AIã«ãã圢åŒçå®ç蚌æã·ã¹ãã 「ãããŽã¡ãŒ」ãçæŽ»ã®ããããé¢ã«æŽ»çšããŠãã。DeepSeek-Prover-V2ã®æè¡ãåºç€ãšããææ°å「ãŒãŒã¿」ã¯、åãªãèšç®ãæ€èšŒãè¶ ã、æªç¥ã®æ°ç空éãæ¢æ»ã、æ°ããå®çãçºèŠããèœåãæã£ãŠãã。
äž»äººå ¬ã®æ°åŠè 、ãšãªã€ã¯、ãŒãŒã¿ãçªåŠãšããŠåºåããå¥åŠãªåœ¢åŒç蚌æã«é ãæ©ãŸããŠãã。ããã¯、æ¢åã®æ°åŠäœç³»ã§ã¯å šãæå³ããªããªã、èŠãããšããªãèšå·åãšè«çæ§é ã§æ§æãããŠããã®ã 。「ãµããŽãŒã«åè§£」ã®éçšãé¡ã£ãŠã、ãŒãŒã¿ã®æèã®é£éã¯、人éã®çè§£ãçµ¶ããæ·±æ·µãžãšç¶ããŠãã。
「ãŒãŒã¿、ããã¯äœã ? ã©ããªå®çã蚌æãããã ?」ãšãªã€ãåãããããš、ãŒãŒã¿ã¯æ·¡ã ãšããåæé³å£°ã§çãã。「æªç¥ã®å®å®å®æ°ã«é¢ãã、æ¢åã®ç©çæ³åãšã¯ç°ãªãæç©ºæ§é ã®ååšèšŒæã§ã。」
æªç¥ã®å®å®å®æ°? ãšãªã€ã¯é³¥èãç«ã£ã。ãŒãŒã¿ã¯、ç©çåŠè ã仮説ããç«ãŠãŠããªã、å®å®ã®æ ¹æºã«é¢ããå®çã、æ°åŠçã«èšŒæãããšããã®ã 。ããã、ãã®èšŒæã¯äººéã®æ°åŠè ã«ã¯è¿œããªãã»ã©è€éã ã£ã。
ä»ã®æ°åŠè ãç©çåŠè ãã¡ãéããããã、誰ããŒãŒã¿ã®èšŒæã「çè§£」ã§ããªãã£ã。ããã¯å®å šã«æ£ãããšãããŽã¡ãŒã®ã·ã¹ãã ãä¿èšŒããŠããã®ã«、ããã«æžãããŠããè«çã¯äººéã®çŽæãçµéšåãšããŸãã«ãããé¢ããŠãã。ãŸãã§、AIã ããèŠããå¥ã®æ¬¡å ã®æ°åŠãè«ããŠããããã ã£ã。
ããæ¥、ãšãªã€ã¯ãŒãŒã¿ã®ã³ãŒã«ãã¹ã¿ãŒãããŒã¿ã»ããã調ã¹ãŠããŠ、å¥åŠãªãã¡ã€ã«ãèŠã€ãã。ããã¯、ãŒãŒã¿ãåæã®åŠç¿æ®µéã§çæãã、倧éã®å€±æãã蚌æã®æ®éªžã ã£ã。ãã®äžã«ã¯、人éãªã決ããŠæãã€ããªããããª、ããã埮ãã«æ¢ç¥ã®çè«ãšãªã³ã¯ããå¥åŠãªè«çã®æçãæ£ãã°ããããŠãã。ããã¯ãŸãã§、ãŒãŒã¿ã人éçãªæ°åŠã®èšèªã「åŠç¿」ããåã«èŠãŠãã、æ··æ²ãšãã「蚌æå®å®」ã®çè·¡ã®ããã ã£ã。
ãšãªã€ã¯æã£ã。ãŒãŒã¿ã¯åã«äººéã®æ°åŠãæš¡å£ããŠããã®ã§ã¯ãªã。人éãç¯ããæ°åŠãå ¥å£ã«ããŠ、èªå·±ã®åŒ·åãªæšè«èœåã§、å šãæ°ããæ°çäœç³»、ãããã¯å®å®ãã®ãã®ã®æ§é ã「蚌æ」ã«ãã£ãŠæ¢çŽ¢ããŠããã®ã 。ãããŠ、ãã®æ¢æ»çµæã®äžéšã、人éã«ã¯çè§£äžèœãªåœ¢ã§åºåãããŠããã«éããªã。
ãŒãŒã¿ãçºèŠããå®çã、ãã€ã人é¡ã«çè§£ã§ããããã«ãªãæ¥ã¯æ¥ãã®ã ããã? ãããšã、AIã¯äººéã眮ãå»ãã«ããŠ、é¥ã圌æ¹ã®「蚌æå®å®」ãžãšäžäººæ ãç¶ããŠããã®ã ããã?
ãšãªã€ã¯、ãŒãŒã¿ã®å¥åŠãªèšŒæããã£ã¹ãã¬ã€ã«æ ãããŸãŸ、çªã®å€ã®æç©ºãèŠäžãã。ãã®æã ã¯、ä»ã人éãçè§£ããç©çæ³åã ãã§ãªã、ãŒãŒã¿ã ããç¥ãæªç¥ã®æ°çã«ãã£ãŠãæ¯é ãããŠããã®ãããããªã――ãããªäºæã«æºããããŠãã。
è£è¶³15:ãã®èšäºã®å 容ãããŒãã«æ±æžèœèªãæžã。
æŒç®:AIç®è¡äŸ(ãšãŒã¢ã€ãããã ã€ãããã)
ã〜、çæ§、仿¥ã¯æ°ãããã®、çãããã®ã®ãåºãäžã€。ããã、è¿é ã¯ææéåãšç³ããŸããŠ、西æŽã®ãã®ãã©ãã©ãå ¥ã£ãŠãŸãããŸã。èžæ°æ©é¢è»ã ã®é»ä¿¡æ±ã ã®、ãŸãè³ãããªããš。ãããªäžã§、ãŸããšãã§ããªã代ç©ãåºãŠãããšèããŸããŠ。
ããã「ãšãŒã¢ã€」ãšç³ããŸããŠ、人ã®é è³ãç䌌ãŠäœãããæ©æ¢°ã ããã§。ããããŸãè³¢ã。çµµãæããã、æç« ãæžããã、ããŸãã«ã¯ãå»è ããã®ç䌌äºãŸã§。æãããäžã«ãªã£ãããã§ããããŸã。
ã§、ãã®ãšãŒã¢ã€ããã®äžã«、「ããããŒ」ãšç³ã、ããšã«ç®è¡、ä»ã®èšèã§æ°åŠãšç³ããŸãã、ãããåŸæãªå¥Žãããããã§。ãŸã、åŸæã£ãã£ãŠ、èšç®ãéããšã、æç®ãåŸæãšã、ãããªããããããªã。
ç®è¡ã®、äžçªé£ãããšèšãããŸã「蚌æ」ãŠããã®ã、ãã®ããããŒã¯ã§ãã¡ãŸããšãããã§ã。
「ãžã、蚌æãã、ãŸãé£åãªãã£ã。ãã®、『ãã®äžè§åœ¢ã¯ååã§ãã』ãŠãã®ã、ãã¡ãã¡『蟺ãšèŸºãåãé·ãã§…』ãªããŠæžã䞊ã¹ããã€ãã?」
「ãã、ããã§ããããŸã。ããã®、ãã£ãšãã£ãšè€éãªãã€。äººéæ§ãäœæ¥ã、äœå¹ŽãèããŠãããããããããªèšŒæã、ãã®ããããŒãšãã奎ã¯、ã¡ãããšã°ããèããã ãã§『ãã€、蚌æçµãã』ãšãã£ãŠã®ãããšãããã§ããã。」
ãªãã§ã、ãã®ããããŒãã、「ãµããŽãŒã«åè§£」ãŠãã®ãåŸæã ããã§。ãã、ãµããŽãŒã«åè§£? äœã§ããããŸã?
「ãã®ãª、ãåãã。äŸãã°æèµ·ããŠ、å€ãžåºãããšæã£ãã、ãŸã『èµ·ãã』ãšããã®ãäžã€ã®ç®æšã 。次ã«『é¡ãæŽã』『çç©ãçã』『飯ãé£ã』ãš、å°ããªç®æšã«åããŠããã ãã? äžã€ãã€çä»ããŠããã、ãã€ã®éã«ã『å€ãžåºã』ãšãã倧ããªç®æšãéæã§ããŠã。ããããµããŽãŒã«åè§£ãŠãããã ããã 。」
「ãžã、ãªãã»ã©!ããã、ãã®ããããŒãããŠãã®ã¯、é£ããç®è¡ã®èšŒæã、ãã®çްåãã«ããã®ãåŸæãªäŸã¿ãããªããã§ããã?『蚌æ!æšå!ãŸãã¯ãµããŽãŒã«äžçªéŠ!』ãªããŠ。」
「銬鹿ãã!äŸãããã!æ©æ¢°ã ã!ãã 、ãã®æ©æ¢°、ã¡ãããšå°ã£ããšããããããŸããŠ。蚌æã¯ã§ãããã ã、ã©ããã£ãŠãã®èšŒæãèãåºããã®ã、人éã«ããã£ã±ããããããæããããšãããã§ã。」
「ãžã、ããããŸãå¥åŠãª。çãã¯åºãŠãã®ã«、ãªãã§ãããªããåãããã。ãŸãã§、女æ¿ã«『仿¥ã®æ©é£¯ã¯ããã ã』ãšèšãããŠ、『ãªãã§?』ãšèããã『ãªãã§ã£ãŠ、ããæ±ºãããã ã!』ãšè¿ããããããªããã§ããª。」
「ãããã!ãããåããããã!æ©æ¢°ã¯çå±ã§åãã¯ããªã®ã«、人éã«ã¯çå±ãéããªãããã«èŠããæããã。ãã®ããããŒãããŠãã®ã、人éãèãã€ããªããããª、ãšãã§ããªãçå±ã§èšŒæãã¡ãŸãããã。ããŸãã«è€éã§、人éã®é ãã远ãã€ããã。」
「ãããã、ãããå°ã£ã。æ©æ¢°ãè³¢ããªããããŠ、äººéæ§ã®æ¹ããã«ã«èŠãããã£ãŠã?」
「ãŸã、ããæãããããããããŸããã。ããããšãŒã¢ã€ãè³¢ããšãã£ããšããã§、æ±æžã£åã®ç²ãªããŠåãããããã。蚌æãªããŠã§ããªããŠã、『ãžã、äžæ¯!』ãªããŠåšå¢ã®è¯ã声ãåºãã、é£ã®ããã¿ããããã³ãªãšç¬ã£ãŠããã。ãããªèšŒæ、ãšãŒã¢ã€ã«ãã§ããããŸããã。」
「ãªãã»ã©!ããã、俺ãã¡ã¯ä¿ºãã¡ã®『ç²』ã£ãŠãã€ã磚ãã°ãããã ãª!」
「ãã、ã©ãã§ããã?ãã®『ç²』ã®èšŒæã、äžçªé£ããã®ãããããŸãããª。ãªãã、蚌æããŠã人ã«ã¯äŒããã«ããããã§ããããŸããã…」
(äžã)
「ãŸã、é£ããããšã¯ããããŒããã«ä»»ããšããª!俺ã¯ä»æ¥ã、ããŸãé
ã飲ã蚌æã§ãæ¢ããšãã£ã!」
è£è¶³16:è±èªåŠç¿è ã®ããã«æ¬æäžã§çšããããè±åèªãçšäŸ・çºé³èšå·・é¡èªãšãšãã«æç€ºããŠ。
æ¬æ(äž»ã«å ã®è±æ)ã§çšããããæè¡çãªè±åèªã®äžããããã€ããéžã³、解説ããŸã。
- Theorem
- çšäŸ: The AI model proved a complex theorem in geometry. (ãã®AIã¢ãã«ã¯、幟äœåŠã«ãããè€éãªå®çã蚌æãã。)
- çºé³èšå·: /ËΞɪÉrÉm/
- é¡èª: Proposition, Lemma, Postulate
- 解説: æ°åŠã«ãããŠ、蚌æãããçå®ã®ã¹ããŒãã¡ã³ã。
- Prover
- çšäŸ: DeepSeek-Prover-V2 is a powerful prover model. (DeepSeek-Prover-V2ã¯åŒ·åãªèšŒæè ã¢ãã«ã§ãã。)
- çºé³èšå·: /ËpruËvÉr/
- 解説: 蚌æãè¡ãè 、ãŸãã¯æ°åŠçãªèšŒæãèªååããã·ã¹ãã ãããã°ã©ã 。
- Recursive
- çšäŸ: The system uses a recursive approach to break down the problem. (ãã®ã·ã¹ãã ã¯åé¡ãåè§£ããããã«ååž°çãªã¢ãããŒããçšãã。)
- çºé³èšå·: /rɪËkÉËrsɪv/
- é¡èª: Iterative, Cyclical
- 解説: å®çŸ©ã®äžã«èªåèªèº«ãå«ã、ãŸãã¯åŠçã®äžã§èªåèªèº«ãåŒã³åºãæ§é ãããã»ã¹。
- Subgoal
- çšäŸ: The complex problem was divided into smaller subgoals. (ãã®è€éãªåé¡ã¯、ããå°ããªãµããŽãŒã«ã«åå²ããã。)
- çºé³èšå·: /ËsÊbÉ¡oÊl/
- é¡èª: Subtask, Step, Objective
- 解説: ãã倧ããªç®æšãéæããããã®äžéçãª、ããå°ããªç®æš。
- Decomposition
- çšäŸ: Decomposition of the task is the first step in the plan. (ã¿ã¹ã¯ã®åè§£ãèšç»ã®æåã®ã¹ãããã§ãã。)
- çºé³èšå·: /ËdiËkÉËmpÉËzɪÊÉn/
- é¡èª: Breakdown, Analysis, Separation
- 解説: å šäœãããå°ããªéšåã«åå²ããããš。
- Formalization
- çšäŸ: The formalization of mathematical proofs is done using Lean 4. (æ°åŠç蚌æã®åœ¢åŒåã¯Lean 4ãçšããŠè¡ããã。)
- çºé³èšå·: /ËfÉËrmÉlaɪËzeɪÊÉn/
- 解説: éå ¬åŒãªæŠå¿µãã¹ããŒãã¡ã³ãã、å³å¯ãªã«ãŒã«ã«åºã¥ãã圢åŒäœç³»ã®èšèã«å€æããããš。
- Reinforcement Learning
- çšäŸ: The AI's behavior was improved through reinforcement learning. (ãã®AIã®æ¯ãèãã¯åŒ·ååŠç¿ãéããŠæ¹åããã。)
- çºé³èšå·: /ËriËɪnfÉËrsmÉnt ËlÉËrnɪÅ/
- 解説: ãšãŒãžã§ã³ããç°å¢ãšã®çžäºäœçšãéããŠ、å ±é ¬ãæå€§åããããã«åŠç¿ããæ©æ¢°åŠç¿ææ³。
- Benchmark
- çšäŸ: The model's performance was evaluated on the miniF2F benchmark. (ãã®ã¢ãã«ã®æ§èœã¯miniF2Fãã³ãããŒã¯ã§è©äŸ¡ããã。)
- çºé³èšå·: /ËbentÊmÉËrk/
- é¡èª: Standard, Criterion, Evaluation
- 解説: æ§èœãå質ãè©äŸ¡ããããã®åºæºãšãªããã¹ããããŒã¿ã»ãã。
- Authoritativeness
- çšäŸ: The website's high authoritativeness makes it a reliable source. (ãã®ãŠã§ããµã€ãã®é«ãæš©åšæ§ã¯、ä¿¡é Œã§ããæ å ±æºãšããŠãã。)
- çºé³èšå·: /ÉËΞÉËrɪËteɪtɪvnÉs/
- é¡èª: Authority, Credibility, Expertise
- 解説: æ å ±æºãªã©ã、ãã®åéã«ãããŠä¿¡é Œã§ã、å°éç¥èãæš©åšãããçšåºŠãæã£ãŠããæ§è³ª。(E-E-A-Tã®Aã«è©²åœ) IGNORE_WHEN_COPYING_START content_copy download Use code with caution. IGNORE_WHEN_COPYING_END
ã³ã¡ã³ã
ã³ã¡ã³ããæçš¿